Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 78(5): 850-861.e5, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348779

RESUMO

Cas13 has demonstrated unique and broad utility in RNA editing, nucleic acid detection, and disease diagnosis; however, a constantly active Cas enzyme may induce unwanted effects. Bacteriophage- or prophage-region-encoded anti-CRISPR (acr) gene molecules provide the potential to control targeting specificity and potency to allow for optimal RNA editing and nucleic acid detection by spatiotemporally modulating endonuclease activities. Using integrated approaches to screen acrVI candidates and evaluate their effects on Cas13 function, we discovered a series of acrVIA1-7 genes that block the activities of Cas13a. These VI-A CRISPR inhibitors substantially attenuate RNA targeting and editing by Cas13a in human cells. Strikingly, type VI-A anti-CRISPRs (AcrVIAs) also significantly muffle the single-nucleic-acid editing ability of the dCas13a RNA-editing system. Mechanistically, AcrVIA1, -4, -5, and -6 bind LwaCas13a, while AcrVIA2 and -3 can only bind the LwaCas13-crRNA (CRISPR RNA) complex. These identified acr molecules may enable precise RNA editing in Cas13-based application and study of phage-bacterium interaction.


Assuntos
Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Edição de RNA/fisiologia , Animais , Bactérias/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Células HEK293 , Humanos , Leptotrichia/genética , Leptotrichia/metabolismo , RNA/genética , Edição de RNA/genética
2.
J Nanobiotechnology ; 22(1): 295, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807131

RESUMO

The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.


Assuntos
Sinais Direcionadores de Proteínas , SARS-CoV-2 , Vacinas de mRNA , Animais , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Anticorpos Antivirais/imunologia , Imunidade Humoral , Vacinas Sintéticas/imunologia , Imunidade Celular
3.
J Nanobiotechnology ; 22(1): 138, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555444

RESUMO

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aß11 and Tween 80 (Aß11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aß11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Minociclina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Água
4.
Nucleic Acids Res ; 50(8): e47, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166837

RESUMO

Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/terapia , Humanos , Camundongos , Pandemias/prevenção & controle , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , SARS-CoV-2/genética
5.
J Immunol ; 207(1): 257-267, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135060

RESUMO

Gut microbiota is increasingly linked to the development of various pulmonary diseases through a gut-lung axis. However, the mechanisms by which gut commensal microbes impact trafficking and functional transition of immune cells remain largely unknown. Using integrated microbiota dysbiosis approaches, we uncover that the gut microbiota directs the migration of group 2 innate lymphoid cells (ILC2s) from the gut to the lung through a gut-lung axis. We identify Proteobacteria as a critical species in the gut microbiome to facilitate natural ILC2 migration, and increased Proteobacteria induces IL-33 production. Mechanistically, IL-33-CXCL16 signaling promotes the natural ILC2 accumulation in the lung, whereas IL-25-CCL25 signals augment inflammatory ILC2 accumulation in the intestines upon abdominal infection, parabiosis, and cecum ligation and puncture in mice. We reveal that these two types of ILC2s play critical but distinct roles in regulating inflammation, leading to balanced host defense against infection. Overall results delineate that Proteobacteria in gut microbiota modulates ILC2 directional migration to the lung for host defense via regulation of select cytokines (IL-33), suggesting novel therapeutic strategies to control infectious diseases.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
6.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687199

RESUMO

Herbal medicines have gained recognition among physicians and patients due to their lower adverse effects compared to modern medicines. They are extensively used to treat various diseases, including cancer, cardiovascular issues, chronic inflammation, microbial contamination, diabetes, obesity, and hepatic disorders, among others. Unfortunately, the clinical application of herbal medicines is limited by their low solubility and inadequate bioavailability. Utilizing herbal medicines in the form of nanocrystals (herbal medicine nanocrystals) has shown potential in enhancing solubility and bioavailability by reducing the particle size, increasing the specific surface area, and modifying the absorption mechanisms. Multiple studies have demonstrated that these nanocrystals significantly improve drug efficacy by reducing toxicity and increasing bioavailability. This review comprehensively examines therapeutic approaches based on herbal medicine nanocrystals. It covers the preparation principles, key factors influencing nucleation and polymorphism control, applications, and limitations. The review underscores the importance of optimizing delivery systems for successful herbal medicine nanocrystal therapeutics. Furthermore, it discusses the main challenges and opportunities in developing herbal medicine nanocrystals for the purpose of treating conditions such as cancer, inflammatory diseases, cardiovascular disorders, mental and nervous diseases, and antimicrobial infections. In conclusion, we have deliberated regarding the hurdles and forthcoming outlook in the realm of nanotoxicity, in vivo kinetics, herbal ingredients as stabilizers of nanocrystals, and the potential for surmounting drug resistance through the utilization of nanocrystalline formulations in herbal medicine. We anticipate that this review will offer innovative insights into the development of herbal medicine nanocrystals as a promising and novel therapeutic strategy.


Assuntos
Nanopartículas , Plantas Medicinais , Humanos , Medicina Herbária , Disponibilidade Biológica , Extratos Vegetais
7.
Immunology ; 166(3): 408-423, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35420160

RESUMO

Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in the cytoplasm, which, in turn, induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signalling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.


Assuntos
DNA Mitocondrial , Nucleotidiltransferases/metabolismo , Infecções por Pseudomonas , Animais , Citocinas/metabolismo , DNA Mitocondrial/genética , Imunidade Inata , Camundongos , Nucleotidiltransferases/genética , Pseudomonas/genética , Pseudomonas/metabolismo
8.
Adv Funct Mater ; 32(39): 2204692, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35942272

RESUMO

SARS-CoV-2 variants are now still challenging all the approved vaccines, including mRNA vaccines. There is an urgent need to develop new generation mRNA vaccines with more powerful efficacy and better safety against SARS-CoV-2 variants. In this study, a new set of ionizable lipids named 4N4T are constructed and applied to form novel lipid nanoparticles called 4N4T-LNPs. Leading 4N4T-LNPs exhibit much higher mRNA translation efficiency than the approved SM-102-LNPs. To test the effectiveness of the novel delivery system, the DS mRNA encoding the full-length S protein of the SARS-CoV-2 variant is synthesized and loaded in 4N4T-LNPs. The obtained 4N4T-DS mRNA vaccines successfully trigger robust and durable humoral immune responses against SARS-CoV-2 and its variants including Delta and Omicron. Importantly, the novel vaccines have higher RBD-specific IgG titers and neutralizing antibody titers than SM-102-based DS mRNA vaccine. Besides, for the first time, the types of mRNA vaccine-induced neutralizing antibodies are found to be influenced by the chemical structure of ionizable lipids. 4N4T-DS mRNA vaccines also induce strong Th1-skewed T cell responses and have good safety. This work provides a novel vehicle for mRNA delivery that is more effective than the approved LNPs and shows its application in vaccines against SARS-CoV-2 variants.

9.
J Immunol ; 205(8): 2231-2242, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929043

RESUMO

The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-ß axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.


Assuntos
DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , DNA Glicosilases/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
10.
FASEB J ; 33(1): 1074-1085, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067380

RESUMO

Airway remodeling with progressive epithelial alterations in the respiratory tract is a severe consequence of asthma. Although dysfunctional signaling transduction is attributed to airway inflammation, the exact mechanism of airway remodeling remains largely unknown. TRPC1, a member of the transient receptor potential canonical Ca2+ channel family, possesses versatile functions but its role in airway remodeling remains undefined. Here, we show that ablation of TRPC1 in mice alleviates airway remodeling following house dust mite (HDM) challenge with decreases in mucus production, cytokine secretion, and collagen deposition. HDM challenge induces Ca2+ influx via the TRPC1 channel, resulting in increased levels of signal transducer and activator of transcription 3 (STAT3) and proinflammatory cytokines. In contrast, STAT3 expression was significantly decreased in TRPC1-/- mouse lungs compared with wild-type controls after HDM challenge. Mechanistically, STAT3 promotes epithelial-to-mesenchymal transition and increases mucin 5AC expression. Collectively, these findings identify TRPC1 as a modulator of HDM-induced airway remodeling via STAT3-mediated increase in mucus production, which provide new insight in our understanding of the molecular basis of airway remodeling, and identify novel therapeutic targets for intervention of severe chronic asthma.-Pu, Q., Zhao, Y., Sun, Y., Huang, T., Lin, P., Zhou, C., Qin, S., Singh, B. B., Wu, M. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-κB signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , NF-kappa B/metabolismo , Pyroglyphidae , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/fisiologia , Animais , Brônquios/metabolismo , Cálcio/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/metabolismo , Hipersensibilidade/fisiopatologia , Inflamação/metabolismo , Transporte de Íons , Camundongos , Camundongos Knockout , Muco , Canais de Cátion TRPC/genética
11.
Immunology ; 158(3): 240-251, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429483

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (CRISPR-Cas) systems in prokaryotes function at defending against foreign DNAs, providing adaptive immunity to maintain homeostasis. CRISPR-Cas may also influence immune regulation ability in mammalian cells through alterations of pathogenic extent and nature. Recent research has implied that Type I CRISPR-Cas systems of Pseudomonas aeruginosa strain UCBPP-PA14 impede recognition by Toll-like receptor 4, and decrease pro-inflammatory responses both in vitro and in vivo. However, the molecular mechanism by which CRISPR-Cas systems affect host immunity is largely undemonstrated. Here, we explored whether CRISPR-Cas systems can influence autophagy to alter the activation of inflammasome. Using the wild-type PA14 and total CRISPR-Cas region deletion (∆TCR) mutant strain, we elucidated the role and underlying mechanism of Type I CRISPR-Cas systems in bacterial infection, and showed that CRISPR-Cas systems impacted the release of mitochondrial DNA and induction of autophagy. CRISPR-Cas deficiency led to an increase of mitochondrial DNA release, a decrease in autophagy, an increase of inflammasome activation and, ultimately, an elevation of pro-inflammatory response. Our findings illustrate a new important mechanism by which Type I CRISPR-Cas systems control their virulence potency to evade host defense.


Assuntos
Morte Celular Autofágica/imunologia , Sistemas CRISPR-Cas/imunologia , Evasão da Resposta Imune , Inflamassomos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade
13.
Int J Mol Sci ; 16(5): 10986-96, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26006233

RESUMO

The epigenetic plasticity hypothesis indicates that exposure during pregnancy may cause adult-onset disorders, including hypertension, myocardial infarction and heart failure. Moreover, myocardial fibrosis coincides with hypertension, myocardial infarction and heart failure. This study was designed to investigate the effects of prenatal exposure to lipopolysaccharide (LPS) on myocardial fibrosis. The result showed that at six and 16 weeks of age, the LPS-treated offspring exhibited increased collagen synthesis, an elevated cardiac index (CI), higher mRNA levels of TIMP-2 and TGFß and a reduced mRNA level of MMP2. The protein levels corresponded to the mRNA levels. The offspring that were prenatally treated with pyrrolidine dithiocarbamic acid (PDTC), an inhibitor of NF-κB, displayed improvements in the CI and in collagen synthesis. Moreover, PDTC ameliorated the expression of cytokines and proteins associated with myocardial fibrosis. The results showed that maternal inflammation can induce myocardial fibrosis in offspring during aging accompanied by an imbalance of TIMP-2/MMP2 and TGFß expression.


Assuntos
Cardiomiopatias/imunologia , Cardiomiopatias/patologia , Lipopolissacarídeos/imunologia , Miocárdio/patologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Feminino , Fibrose , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/genética , Miocárdio/imunologia , Miocárdio/metabolismo , NF-kappa B/antagonistas & inibidores , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/genética , Pirrolidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tiocarbamatos/uso terapêutico , Inibidor Tecidual de Metaloproteinase-2/genética , Fator de Crescimento Transformador beta/genética
14.
MedComm (2020) ; 5(6): e567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817652

RESUMO

AC484 was developed by designing compounds based on the PTPN2 protein structure. AC484 enhances antitumor immunity through multiple mechanisms: increasing tumor sensitivity to IFN-γ, improving T-cell functions, stimulating tumor microenvironment inflammation, expanding TCR diversity, and preventing T-cell exhaustion. Interestingly, the efficacy of AC484 was also mediated by CD8+ and NK cells.

15.
Acta Pharm Sin B ; 14(4): 1814-1826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572113

RESUMO

Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.

16.
Acta Biomater ; 162: 120-134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828165

RESUMO

Most of the nanomedicines can reduce the side effects of anti-tumor chemical drugs but do not have good enough therapeutic efficacy, largely due to the sustained drug release profile. It might be a promising alternative strategy to develop a cascade-responsive nanoplatform against tumor with the burst release of chemotherapeutics based on the highly efficient tumor cell targeting delivery. In this work, we constructed innovative nanoparticles (PMP/WPH-NPs) consisting of two functional polymers. PMP contained the MMP-2 enzyme sensitive linker and disulfide bond, which could respond to the tumor-overexpressing enzyme MMP-2 and high-level glutathione. While WPH promoted tumor penetration and acid-responsive drug release by modifying cellular penetrating peptides and polymerizing L-histidine. PMP/WPH-NPs exhibited outstanding features including longer blood circulation time, promoted tumor-specific accumulation, enhanced tumor penetration and efficient escape from lysosomes. Subsequently, the model drug paclitaxel (PTX), widely used in the tumor chemotherapy, was encapsulated into PMP/WPH-NPs via an emulsion solvent evaporation method. Within a short period of time, PTX-PMP/WPH-NP in simulated tumor cellular microenvironment could release 8 times more PTX than that in the physiological environment, demonstrating a good potential in tumor cell-specific burst drug release. In addition, PTX-PMP/WPH-NPs exhibited stronger anti-tumor activity than PTX in vitro and in vivo, which also had good biocompatibility according to the hemolysis assay and H&E staining. In summary, our work has succeeded in designing an original polymeric nanoplatform for programmed burst drug release based on the tailored tumor targeting delivery system. This new approach would facilitate the clinical translation of more anti-tumor nanomedicines. STATEMENT OF SIGNIFICANCE: Biomaterials responsive to the tumor-specific stimulus has conventionally used in the targeted-delivery of anti-tumor drugs. However, the levels of common stimulus are not uniformly distributed and not high enough to effectively trigger drug release. In an effort to achieve a better specific drug release and promote the chemotherapeutic efficacy, we constructed a cascade responsive nanoplatform with tumor cell-specific drug burst release profile. The tailored biomaterial could overcome the bio-barriers in vivo and succeeded in the programmed burst drug release based on the tumor cell-specific delivery of chemotherapeutics.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Metaloproteinase 2 da Matriz , Preparações Farmacêuticas , Antineoplásicos/uso terapêutico , Paclitaxel , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/química , Microambiente Tumoral
17.
Acta Pharm Sin B ; 13(3): 942-954, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970209

RESUMO

The extraordinary advantages associated with mRNA vaccines, including their high efficiency, relatively low severity of side effects, and ease of manufacture, have enabled them to be a promising immunotherapy approach against various infectious diseases and cancers. Nevertheless, most mRNA delivery carriers have many disadvantages, such as high toxicity, poor biocompatibility, and low efficiency in vivo, which have hindered the widespread use of mRNA vaccines. To further characterize and solve these problems and develop a new type of safe and efficient mRNA delivery carrier, a negatively charged SA@DOTAP-mRNA nanovaccine was prepared in this study by coating DOTAP-mRNA with the natural anionic polymer sodium alginate (SA). Intriguingly, the transfection efficiency of SA@DOTAP-mRNA was significantly higher than that of DOTAP-mRNA, which was not due to the increase in cellular uptake but was associated with changes in the endocytosis pathway and the strong lysosome escape ability of SA@DOTAP-mRNA. In addition, we found that SA significantly increased the expression of LUC-mRNA in mice and achieved certain spleen targeting. Finally, we confirmed that SA@DOTAP-mRNA had a stronger antigen-presenting ability in E. G7-OVA tumor-bearing mice, dramatically inducing the proliferation of OVA-specific CLTs and ameliorating the antitumor effect. Therefore, we firmly believe that the coating strategy applied to cationic liposome/mRNA complexes is of potential research value in the field of mRNA delivery and has promising clinical application prospects.

18.
Acta Pharm Sin B ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36647424

RESUMO

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

19.
Signal Transduct Target Ther ; 7(1): 166, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597779

RESUMO

The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists' desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.


Assuntos
COVID-19 , COVID-19/genética , COVID-19/terapia , Humanos , Pandemias , Proteínas , RNA Mensageiro/genética
20.
Signal Transduct Target Ther ; 7(1): 199, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752612

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.


Assuntos
COVID-19 , Infecções por Pseudomonas , Animais , Resistência Microbiana a Medicamentos , Humanos , Mamíferos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Tecnologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA