Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Thorax ; 76(3): 239-247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268457

RESUMO

BACKGROUND: Lung microbiota profiles in patients with early idiopathic pulmonary fibrosis (IPF) have been associated with disease progression; however, the topographic heterogeneity of lung microbiota and their roles in advanced IPF are unknown. METHODS: We performed a retrospective, case-control study of explanted lung tissue obtained at the time of lung transplantation or rapid autopsy from patients with IPF and other chronic lung diseases (connective tissue disease-associated interstitial lung disease (CTD-ILD), cystic fibrosis (CF), COPD and donor lungs unsuitable for transplant from Center for Organ Recovery and Education (CORE)). We sampled subpleural tissue and airway-based specimens (bronchial washings and airway tissue) and quantified bacterial load and profiled communities by amplification and sequencing of the 16S rRNA gene. FINDINGS: Explants from 62 patients with IPF, 15 patients with CTD-ILD, 20 patients with CF, 20 patients with COPD and 20 CORE patients were included. Airway-based samples had higher bacterial load compared with distal parenchymal tissue. IPF basilar tissue had much lower bacterial load compared with CF and CORE lungs (p<0.001). No microbial community differences were found between parenchymal tissue samples from different IPF lobes. Dirichlet multinomial models revealed an IPF cluster (29%) with distinct composition, high bacterial load and low alpha diversity, exhibiting higher odds for acute exacerbation or death. INTERPRETATION: IPF explants had low biomass in the distal parenchyma of all three lobes with higher bacterial load in the airways. The discovery of a distinct subgroup of patients with IPF with higher bacterial load and worse clinical outcomes supports investigation of personalised medicine approaches for microbiome-targeted interventions.


Assuntos
Fibrose Pulmonar Idiopática/microbiologia , Transplante de Pulmão , Pulmão/microbiologia , Microbiota/fisiologia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos de Casos e Controles , Progressão da Doença , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/cirurgia , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
2.
Am J Respir Crit Care Med ; 201(4): 445-457, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31682463

RESUMO

Rationale: Mechanisms of HIV-associated chronic obstructive pulmonary disease (COPD) are poorly understood. The oral microbiome shapes the lung microbiome, and gut dysbiosis can affect lung diseases; however, relationships of the oral and gut microbiome to COPD in HIV have not been explored.Objectives: To examine alterations in the oral and gut microbiome associated with pulmonary disease in persons with HIV (PWH).Methods: Seventy-five PWH and 93 HIV-uninfected men from the MACS (Multicenter AIDS Cohort Study) performed pulmonary function testing. Sequencing of bacterial 16S ribosomal RNA in saliva and stool was performed. We used nonmetric multidimensional scaling, permutational multivariate ANOVA, and linear discriminant analysis to analyze communities by HIV and lung function.Measurements and Main Results: Oral microbiome composition differed by HIV and smoking status. Alterations of oral microbial communities were observed in PWH with abnormal lung function with increases in relative abundance of Veillonella, Streptococcus, and Lactobacillus. There were no significant associations between the oral microbiome and lung function in HIV-uninfected individuals. No associations with HIV status or lung function were seen with the gut microbiome.Conclusions: Alterations of oral microbiota in PWH were related to impaired pulmonary function and to systemic inflammation. These results suggest that the oral microbiome may serve as a biomarker of lung function in HIV and that its disruption may contribute to COPD pathogenesis.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV/complicações , Infecções por HIV/microbiologia , Microbiota , Boca/microbiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória
3.
Am J Respir Crit Care Med ; 202(12): 1666-1677, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717152

RESUMO

Rationale: Host inflammatory responses have been strongly associated with adverse outcomes in critically ill patients, but the biologic underpinnings of such heterogeneous responses have not been defined.Objectives: We examined whether respiratory tract microbiome profiles are associated with host inflammation and clinical outcomes of acute respiratory failure.Methods: We collected oral swabs, endotracheal aspirates (ETAs), and plasma samples from mechanically ventilated patients. We performed 16S ribosomal RNA gene sequencing to characterize upper and lower respiratory tract microbiota and classified patients into host-response subphenotypes on the basis of clinical variables and plasma biomarkers of innate immunity and inflammation. We derived diversity metrics and composition clusters with Dirichlet multinomial models and examined our data for associations with subphenotypes and clinical outcomes.Measurements and Main Results: Oral and ETA microbial communities from 301 mechanically ventilated subjects had substantial heterogeneity in α and ß diversity. Dirichlet multinomial models revealed a cluster with low α diversity and enrichment for pathogens (e.g., high Staphylococcus or Pseudomonadaceae relative abundance) in 35% of ETA samples, associated with a hyperinflammatory subphenotype, worse 30-day survival, and longer time to liberation from mechanical ventilation (adjusted P < 0.05), compared with patients with higher α diversity and relative abundance of typical oral microbiota. Patients with evidence of dysbiosis (low α diversity and low relative abundance of "protective" oral-origin commensal bacteria) in both oral and ETA samples (17%, combined dysbiosis) had significantly worse 30-day survival and longer time to liberation from mechanical ventilation than patients without dysbiosis (55%; adjusted P < 0.05).Conclusions: Respiratory tract dysbiosis may represent an important, modifiable contributor to patient-level heterogeneity in systemic inflammatory responses and clinical outcomes.


Assuntos
Disbiose/etiologia , Disbiose/mortalidade , Microbiota/genética , Respiração Artificial/efeitos adversos , Respiração Artificial/mortalidade , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/mortalidade , Sistema Respiratório/microbiologia , Adulto , Idoso , Estado Terminal/terapia , Feminino , Variação Genética , Humanos , Inflamação/etiologia , Inflamação/microbiologia , Masculino
4.
Respir Res ; 20(1): 265, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775777

RESUMO

BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes.


Assuntos
DNA Bacteriano/genética , Microbiota/genética , Nanoporos , Pneumonia/genética , Pneumonia/terapia , Antibacterianos/administração & dosagem , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Metagenômica/métodos , Pneumonia/diagnóstico , Valores de Referência , Respiração Artificial/métodos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/genética , Insuficiência Respiratória/terapia , Fatores de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Fatores de Virulência/genética
5.
Thorax ; 73(5): 481-484, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802277

RESUMO

The microbiome has been proposed to play a role in the progression of idiopathic pulmonary fibrosis (IPF) based on bronchoalveolar lavage analyses, but the microbiome of lung tissue in IPF has not been explored. In a case-control study of lung explants analysed by 16S rRNA gene sequencing, we could not reliably detect bacterial DNA in basilar tissue samples from patients with either chronic or acute exacerbations of IPF, in contrast to control candidate-donor lungs or cystic fibrosis explants. Thus, our data do not indicate microbiome alterations in regions of IPF lung with advanced fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/microbiologia , Microbiota , Estudos de Casos e Controles , Fibrose Cística/microbiologia , Humanos , RNA Ribossômico 16S/análise
6.
Nat Commun ; 15(1): 4708, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830853

RESUMO

Critical illness can significantly alter the composition and function of the human microbiome, but few studies have examined these changes over time. Here, we conduct a comprehensive analysis of the oral, lung, and gut microbiota in 479 mechanically ventilated patients (223 females, 256 males) with acute respiratory failure. We use advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for lung microbiota. Our results reveal a progressive dysbiosis in all three body compartments, characterized by a reduction in microbial diversity, a decrease in beneficial anaerobes, and an increase in pathogens. We find that clinical factors, such as chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, are associated with specific patterns of dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity and composition by 16S independently predicted survival and performed better than traditional clinical and host-response predictors. These observations are validated in two separate cohorts of COVID-19 patients, highlighting the potential of lung microbiota as valuable prognostic biomarkers in critical care. Understanding these microbiome changes during critical illness points to new opportunities for microbiota-targeted precision medicine interventions.


Assuntos
COVID-19 , Disbiose , Microbioma Gastrointestinal , Pulmão , Microbiota , Humanos , Feminino , Masculino , Disbiose/microbiologia , Pessoa de Meia-Idade , Pulmão/microbiologia , COVID-19/microbiologia , COVID-19/virologia , Idoso , Microbiota/genética , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/genética , Estudos Longitudinais , RNA Ribossômico 16S/genética , Insuficiência Respiratória/microbiologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adulto , Respiração Artificial , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Estado Terminal , Metagenômica/métodos
7.
Cytokine ; 61(3): 924-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23360828

RESUMO

CCL20 is currently the only known chemokine ligand for the receptor CCR6, and is a mucosal chemokine involved in normal and pathological immune responses. Although nucleotide sequence data are available for ccl20 and ccr6 sequences from multiple species, the ferret ccl20 and ccr6 sequences have not been determined. To increase our understanding of immune function in ferret models of infection and vaccination, we have used RT-PCR to obtain the ferret ccl20 and ccr6 cDNA sequences and functionally characterize the encoded proteins. The open reading frames of both genes were highly conserved across species and mostly closely related to canine sequences. For functional analyses, single cell clones expressing ferret CCR6 were generated, a ferret CCL20/mouse IgG(2a) fusion protein (fCCL20-mIgG(2a)) was produced, and fCCL20 was chemically synthesized. Cell clones expressing ferret CCR6 responded chemotactically to fCCL20-mIgG2a fusion protein and synthetic ferret CCL20. Chemotaxis inhibition studies identified the polyphenol epigallocatechin-3-gallate and the murine γ-herpesvirus 68 M3 protein as inhibitors of fCCL20. Surface plasmon resonance studies revealed that EGCG bound directly to fCCL20. These results provide molecular characterization of previously unreported ferret immune gene sequences and for the first time identify a broad-spectrum small molecule inhibitor of CCL20 and reveal CCL20 as a target for the herpesviral M3 protein.


Assuntos
Quimiocina CCL20/metabolismo , Quimiotaxia , Furões/metabolismo , Receptores CCR6/metabolismo , Sequência de Aminoácidos , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Quimiocina CCL20/química , Quimiotaxia/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Cães , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Ligação Proteica/efeitos dos fármacos , Receptores CCR6/química , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais/farmacologia
8.
J Immunol ; 186(6): 3693-700, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21307292

RESUMO

One major activity of chemokines is the recruitment of immune cells to sites of infection and inflammation. CD4(+) Th1 cells play critical roles in host defense against pathogens and in the pathogenesis of many immune-mediated diseases. It was reported that epigallocatechin-3-gallate (EGCG) exhibits anti-inflammatory properties, but the mechanisms have not been completely defined. In this study, we found that EGCG markedly decreased recruitment of murine OVA-specific Th1 cells and other inflammatory cells into the airways in a Th1 adoptive-transfer mouse model. In vitro analysis revealed that EGCG inhibited CXCR3 ligand-driven chemotaxis of murine and human cells. Surface plasmon resonance studies revealed that EGCG bound directly to chemokines CXCL9, CXCL10, and CXCL11. These results indicated that one anti-inflammatory mechanism of EGCG is binding of proinflammatory chemokines and limiting their biological activities. These findings support further development of EGCG as a potent therapeutic for inflammatory diseases.


Assuntos
Catequina/análogos & derivados , Inibição de Migração Celular/imunologia , Quimiocinas/metabolismo , Mediadores da Inflamação/fisiologia , Pulmão/imunologia , Pulmão/patologia , Animais , Sítios de Ligação/imunologia , Catequina/metabolismo , Catequina/fisiologia , Células Cultivadas , Quimiocina CXCL10/antagonistas & inibidores , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/antagonistas & inibidores , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/antagonistas & inibidores , Quimiocina CXCL9/metabolismo , Quimiocinas/antagonistas & inibidores , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Camundongos Transgênicos
9.
Microbiome ; 11(1): 117, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226179

RESUMO

BACKGROUND: The advent of culture-independent, next-generation DNA sequencing has led to the discovery of distinct lung bacterial communities. Studies of lung microbiome taxonomy often reveal only subtle differences between health and disease, but host recognition and response may distinguish the members of similar bacterial communities in different populations. Magnetic-activated cell sorting has been applied to the gut microbiome to identify the numbers and types of bacteria eliciting a humoral response. We adapted this technique to examine the populations of immunoglobulin-bound bacteria in the lung. METHODS: Sixty-four individuals underwent bronchoalveolar lavage (BAL). We separated immunoglobulin G-bound bacteria using magnetic-activated cell sorting and sequenced the 16S rRNA gene on the Illumina MiSeq platform. We compared microbial sequencing data in IgG-bound bacterial communities compared to raw BAL then examined the differences in individuals with and without HIV as a representative disease state. RESULTS: Immunoglobulin G-bound bacteria were identified in all individuals. The community structure differed when compared to raw BAL, and there was a greater abundance of Pseudomonas and fewer oral bacteria in IgG-bound BAL. Examination of IgG-bound communities in individuals with HIV demonstrated the differences in Ig-bound bacteria by HIV status that were not seen in a comparison of raw BAL, and greater numbers of immunoglobulin-bound bacteria were associated with higher pulmonary cytokine levels. CONCLUSIONS: We report a novel application of magnetic-activated cell sorting to identify immunoglobulin G-bound bacteria in the lung. This technique identified distinct bacterial communities which differed in composition from raw bronchoalveolar lavage, revealing the differences not detected by traditional analyses. Cytokine response was also associated with differential immunoglobulin binding of lung bacteria, suggesting the functional importance of these communities. Video Abstract.


Assuntos
Infecções por HIV , Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Imunoglobulina G , Citocinas , Dimercaprol , Fenômenos Magnéticos
10.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284423

RESUMO

Current plasma-based subphenotyping approaches in acute respiratory failure represent host responses at a systemic level but do not capture important differences in lower respiratory tract biology https://bit.ly/40kTdDG.

11.
medRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292915

RESUMO

Rationale: Disruption of respiratory bacterial communities predicts poor clinical outcomes in critical illness; however, the role of respiratory fungal communities (mycobiome) is poorly understood. Objectives: We investigated whether mycobiota variation in the respiratory tract is associated with host-response and clinical outcomes in critically ill patients. Methods: To characterize the upper and lower respiratory tract mycobiota, we performed rRNA gene sequencing (internal transcribed spacer) of oral swabs and endotracheal aspirates (ETA) from 316 mechanically-ventilated patients. We examined associations of mycobiome profiles (diversity and composition) with clinical variables, host-response biomarkers, and outcomes. Measurements and Main Results: ETA samples with >50% relative abundance for C. albicans (51%) were associated with elevated plasma IL-8 and pentraxin-3 (p=0.05), longer time-to-liberation from mechanical ventilation (p=0.04) and worse 30-day survival (adjusted hazards ratio (adjHR): 1.96 [1.04-3.81], p=0.05). Using unsupervised clustering, we derived two clusters in ETA samples, with Cluster 2 (39%) showing lower alpha diversity (p<0.001) and higher abundance of C. albicans (p<0.001). Cluster 2 was significantly associated with the prognostically adverse hyperinflammatory subphenotype (odds ratio 2.07 [1.03-4.18], p=0.04) and predicted worse survival (adjHR: 1.81 [1.03-3.19], p=0.03). C. albicans abundance in oral swabs was also associated with the hyperinflammatory subphenotype and mortality. Conclusions: Variation in respiratory mycobiota was significantly associated with systemic inflammation and clinical outcomes. C. albicans abundance emerged as a negative predictor in both the upper and lower respiratory tract. The lung mycobiome may play an important role in the biological and clinical heterogeneity among critically ill patients and represent a potential therapeutic target for lung injury in critical illness.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37293566

RESUMO

Obesity and associated changes to the gut microbiome worsen airway inflammation and hyperresponsiveness in asthma. Obesogenic host-microbial metabolomes have altered production of metabolites that may influence lung function and inflammatory responses in asthma. To understand the interplay of the gut microbiome, metabolism, and host inflammation in obesity-associated asthma, we used a multi-omics approach to profile the gut-lung axis in the setting of allergic airway disease and diet-induced obesity. We evaluated an immunomodulator, nitro-oleic acid (NO2-OA), as a host- and microbial-targeted treatment intervention for obesity-associated allergic asthma. Allergic airway disease was induced using house dust mite and cholera toxin adjuvant in C57BL6/J mice with diet-induced obesity to model obesity-associated asthma. Lung function was measured by flexiVent following a week of NO2-OA treatment and allergen challenge. 16S rRNA gene (from DNA, taxa presence) and 16S rRNA (from RNA, taxa activity) sequencing, metabolomics, and host gene expression were paired with a Treatment-Measured-Response model as a data integration framework for identifying latent/hidden relationships with linear regression among variables identified from high-dimensional meta-omics datasets. Targeting both the host and gut microbiota, NO2-OA attenuated airway inflammation, improved lung elastance, and modified the gut microbiome. Meta-omics data integration and modeling determined that gut-associated inflammation, metabolites, and functionally active gut microbiota were linked to lung function outcomes. Using Treatment-Measured-Response modeling and meta-omics profiling of the gut-lung axis, we uncovered a previously hidden network of interactions between gut levels of amino acid metabolites involved in elastin and collagen synthesis, gut microbiota, NO2-OA, and lung elastance. Further targeted metabolomics analyses revealed that obese mice with allergic airway disease had higher levels of proline and hydroxyproline in the lungs. NO2-OA treatment reduced proline biosynthesis by downregulation of pyrroline-5-carboxylate reductase 1 (PYCR1) expression. These findings are relevant to human disease: adults with mild-moderate asthma and BMI ≥ 25 had higher plasma hydroxyproline levels. Our results suggest that changes to structural proteins in the lung airways and parenchyma may contribute to heightened lung elastance and serve as a potential therapeutic target for obese allergic asthma.

13.
iScience ; 26(6): 106832, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250794

RESUMO

Uncertainty persists whether anaerobic bacteria represent important pathogens in aspiration pneumonia. In a nested case-control study of mechanically ventilated patients classified as macro-aspiration pneumonia (MAsP, n = 56), non-macro-aspiration pneumonia (NonMAsP, n = 91), and uninfected controls (n = 11), we profiled upper (URT) and lower respiratory tract (LRT) microbiota with bacterial 16S rRNA gene sequencing, measured plasma host-response biomarkers, analyzed bacterial communities by diversity and oxygen requirements, and performed unsupervised clustering with Dirichlet Multinomial Models (DMM). MAsP and NonMAsP patients had indistinguishable microbiota profiles by alpha diversity and oxygen requirements with similar host-response profiles and 60-day survival. Unsupervised DMM clusters revealed distinct bacterial clusters in the URT and LRT, with low-diversity clusters enriched for facultative anaerobes and typical pathogens, associated with higher plasma levels of SPD and sCD14 and worse 60-day survival. The predictive inter-patient variability in these bacterial profiles highlights the importance of microbiome study in patient sub-phenotyping and precision medicine approaches for severe pneumonia.

14.
iScience ; 26(11): 108093, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965142

RESUMO

Secondary infection (SI) diagnosis in severe COVID-19 remains challenging. We correlated metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) with clinical SI assessment, immune response, and outcomes. We classified 42 COVID-19 inpatients as microbiologically confirmed-SI (Micro-SI, n = 8), clinically diagnosed-SI (Clinical-SI, n = 13, i.e., empiric antimicrobials), or no-clinical-suspicion-for-SI (No-Suspected-SI, n = 21). McfDNA-Seq was successful in 73% of samples. McfDNA detection was higher in Micro-SI (94%) compared to Clinical-SI (57%, p = 0.03), and unexpectedly high in No-Suspected-SI (83%), similar to Micro-SI. We detected culture-concordant mcfDNA species in 81% of Micro-SI samples. McfDNA correlated with LRT 16S rRNA bacterial burden (r = 0.74, p = 0.02), and biomarkers (white blood cell count, IL-6, IL-8, SPD, all p < 0.05). McfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p = 0.03). High mcfDNA levels in COVID-19 patients without clinical SI suspicion may suggest SI under-diagnosis. McfDNA-Seq offers a non-invasive diagnostic tool for pathogen identification, with prognostic value on clinical outcomes.

15.
Res Sq ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37841841

RESUMO

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.

16.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808745

RESUMO

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.

17.
CHEST Crit Care ; 1(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38250011

RESUMO

BACKGROUND: Hospitalized patients with severe COVID-19 follow heterogeneous clinical trajectories, requiring different levels of respiratory support and experiencing diverse clinical outcomes. Differences in host immune responses to SARS-CoV-2 infection may account for the heterogeneous clinical course, but we have limited data on the dynamic evolution of systemic biomarkers and related subphenotypes. Improved understanding of the dynamic transitions of host subphenotypes in COVID-19 may allow for improved patient selection for targeted therapies. RESEARCH QUESTION: We examined the trajectories of host-response profiles in severe COVID-19 and evaluated their prognostic impact on clinical outcomes. STUDY DESIGN AND METHODS: In this prospective observational study, we enrolled 323 inpatients with COVID-19 receiving different levels of baseline respiratory support: (1) low-flow oxygen (37%), (2) noninvasive ventilation (NIV) or high-flow oxygen (HFO; 29%), (3) invasive mechanical ventilation (27%), and (4) extracorporeal membrane oxygenation (7%). We collected plasma samples on enrollment and at days 5 and 10 to measure host-response biomarkers. We classified patients by inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker, and subphenotype trajectories and outcomes during hospitalization. RESULTS: IL-6, procalcitonin, and angiopoietin 2 persistently were elevated in patients receiving higher levels of respiratory support, whereas soluble receptor of advanced glycation end products (sRAGE) levels displayed the inverse pattern. Patients receiving NIV or HFO at baseline showed the most dynamic clinical trajectory, with 24% eventually requiring intubation and exhibiting worse 60-day mortality than patients receiving invasive mechanical ventilation at baseline (67% vs 35%; P < .0001). sRAGE levels predicted NIV failure and worse 60-day mortality for patients receiving NIV or HFO, whereas IL-6 levels were predictive in all patients regardless of level of support (P < .01). Patients classified to a hyperinflammatory subphenotype at baseline (< 10%) showed worse 60-day survival (P < .0001) and 50% of them remained classified as hyperinflammatory at 5 days after enrollment. INTERPRETATION: Longitudinal study of the systemic host response in COVID-19 revealed substantial and predictive interindividual variability influenced by baseline levels of respiratory support.

19.
Medicine (Baltimore) ; 101(27): e29264, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801755

RESUMO

We aimed to investigate the relationship between measures of HIV persistence with antiretroviral therapy (ART) and cigarette smoking, systemic markers of inflammation, and pulmonary function. Retrospective study of 82 people with HIV (PWH) on ART for a median of 6.9 years (5.6-7.8) and plasma HIV RNA levels <50 copies/mL. HIV DNA and cell-associated HIV RNA (CA-RNA) were measured in peripheral blood mononuclear cells (PBMC) and plasma HIV RNA was measured by single-copy assay (SCA). Plasma levels of 17 inflammatory mediators were measured by Bio-Plex, and standard pulmonary function tests (PFT) were performed in all participants. Median age was 52 years and 41% were women. Most had preserved CD4+ T cell counts (median (IQR) 580 (361-895) cells/mm3). Median plasma HIV RNA was 1.3 (0.7-4.6) copies/mL, and median levels of HIV DNA and CA-RNA in PBMC were 346 (140-541) copies and 19 (3.7-49) copies per 1 million PBMC, respectively. HIV DNA was higher in smokers than in nonsmokers (R = 0.3, P < 0.05), and smoking pack-years positively correlated with HIV DNA and CA-RNA (R = 0.3, P < 0.05 and R = 0.4, P < 0.01, respectively). HIV DNA, CA-RNA, and plasma HIV RNA were not significantly associated with any measure of pulmonary function or inflammation. Cigarette smoking was associated with HIV DNA and CA-RNA levels in blood, but measures of HIV persistence were not associated with pulmonary function or inflammation.


Assuntos
Fármacos Anti-HIV , Fumar Cigarros , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , DNA Viral , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Inflamação/tratamento farmacológico , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , RNA , RNA Viral/genética , Estudos Retrospectivos , Carga Viral
20.
Ann Am Thorac Soc ; 19(12): 2013-2020, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35939796

RESUMO

Rationale: Human immunodeficiency virus (HIV) infection is associated with chronic lung disease and impaired pulmonary function; however, longitudinal pulmonary function phenotypes in HIV are undefined. Objectives: To identify pulmonary function trajectories, their determinants, and outcomes. Methods: We used data from participants with HIV in the Pittsburgh HIV Lung Cohort with three or more pulmonary function tests between 2007 and 2020. We analyzed post-bronchodilator forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC, and diffusing capacity of the lung for carbon monoxide (DlCO) using group-based trajectory modeling to identify subgroups of individuals whose measurements followed a similar pattern over time. We examined the association between participant characteristics and trajectories using multivariable logistic regression. In exploratory adjusted analyses restricted to individuals with available plasma cytokine data, we investigated the association between 18 individual standardized cytokine concentrations and trajectories. We compared mortality, dyspnea prevalence, respiratory health status, and 6-minute-walk distance between phenotypes. Results: A total of 265 participants contributed 1,606 pulmonary function measurements over a median follow-up of 8.1 years. We identified two trajectories each for FEV1 and FVC: "low baseline, slow decline" and "high baseline, rapid decline." There were three trajectory groups for FEV1/FVC: "rapid decline," "moderate decline," and "slow decline." Finally, we identified two trajectories for DlCO: "baseline low" and "baseline high." The low baseline, slow decline FEV1 and FVC, rapid decline, and moderate decline FEV1/FVC, and baseline low DlCO phenotypes were associated with increased dyspnea prevalence, worse respiratory health status, and decreased 6-minute-walk distance. The baseline low DlCO phenotype was also associated with worse mortality. Current smoking and pack-years of smoking were associated with the adverse FEV1, FEV1/FVC, and DlCO phenotypes. Detectable viremia was the only HIV marker associated with the adverse DlCO phenotype. C-reactive protein and endothelin-1 were associated with the adverse FEV1 and FVC phenotypes, and endothelin-1 trended toward an association with the adverse DlCO phenotype. Conclusions: We identified novel, distinct longitudinal pulmonary function phenotypes with significant differences in characteristics and outcomes. These findings highlight the importance of lung dysfunction over time in people with HIV and should be validated in additional cohorts.


Assuntos
Infecções por HIV , Pneumopatias , Humanos , Endotelina-1 , Pulmão , Volume Expiratório Forçado , Capacidade Vital , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Dispneia , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA