Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 65: 282-292, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548399

RESUMO

Hexagonal turbostratic birnessite, with the characteristics of high contents of vacancies, varying amounts of structural and adsorbed Mn3+, and small particle size, undergoes strong adsorption reactions with trace metal (TM) contaminants. While the interactions of TM, i.e., Zn2+, with birnessite are well understood, the effect of birnessite structural characteristics on the coordination and stability of Zn2+ on the mineral surfaces under proton attack is as yet unclear. In the present study, the effects of a series of synthesized hexagonal turbostratic birnessites with different Mn average oxide states (AOSs) on the coordination geometry of adsorbed Zn2+ and its stability under acidic conditions were investigated. With decreasing Mn AOS, birnessite exhibits smaller particle sizes and thus larger specific surface area, higher amounts of layer Mn3+ and thus longer distances for the first MnO and MnMn shells, but a low quantity of available vacancies and thus low adsorption capacity for Zn2+. Zn K-edge EXAFS spectroscopy demonstrates that birnessite with low Mn AOS has smaller adsorption capacity but more tetrahedral Zn (IVZn) complexes on vacancies than octahedral (VIZn) complexes, and Zn2+ is more unstable under acidic conditions than that adsorbed on birnessite with high Mn AOS. High Zn2+ loading favors the formation of VIZn complexes over IVZn complexes, and the release of Zn2+ is faster than at low loading. These results will deepen our understanding of the interaction mechanisms of various TMs with natural birnessites, and the stability and thus the potential toxicity of heavy metal pollutants sequestered by engineered nano-sized metal oxide materials.


Assuntos
Poluentes Ambientais/química , Manganês/química , Modelos Químicos , Óxidos/química , Zinco/química , Manganês/classificação , Oxirredução
2.
J Hazard Mater ; 452: 131351, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027918

RESUMO

Al(III)-substituted ferrihydrite existing in natural soils is more common than pure ferrihydrite; however, the effects of Al(III) incorporation on the interaction between ferrihydrite, Mn(II) catalytic oxidation, and coexisting transition metal (e.g., Cr(III)) oxidation remain elusive. To address this knowledge gap, Mn(II) oxidation on synthetic Al(III)-incorporated ferrihydrite and Cr(III) oxidation on the previously formed Fe-Mn binaries were investigated in this study via batch kinetic studies combined with various spectroscopic analyses. The results indicate that Al substitution in ferrihydrite barely changes its morphology, specific surface area, or the types of surface functional groups, but increases the total amount of hydroxyl on the ferrihydrite surface and enhances its adsorption capacity toward Mn(II). Conversely, Al substitution inhibits electron transfer in ferrihydrite, thereby weakening its electrochemical catalysis on Mn(II) oxidation. Thus, the contents of Mn(III/IV) oxides with higher Mn valence states decrease, whereas those of lower Mn valence states increase. Furthermore, the number of hydroxyl radicals formed during Mn(II) oxidation on ferrihydrite decreases. These inhibitions of Al substitution on Mn(II) catalytic oxidation subsequently cause decreased Cr(III) oxidation and poor Cr(VI) immobilization. Additionally, Mn(III) in Fe-Mn binaries is confirmed to play a dominant role in Cr(III) oxidation. This research facilitates sound decision-making regarding the management of Cr-contaminated soil environments enriched with Fe and Mn.

3.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407223

RESUMO

Under the background of the Paris Agreement on reducing greenhouse gases, waste wools were converted into wool carbon fiber (WCF) and WCF-MoS2 composites by low-temperature catalytic hydrothermal carbonization. Their structures and gas-sensing performances were studied for the first time. Due to the existence of heterojunctions, the responses of the WCF-MoS2 composite to the five analytes were 3-400 times those of MoS2 and 2-11 times those of WCF. Interestingly, because of the N, P, and S elements contained in wools, the WCF prepared by the hydrothermal method was realized the doping of N, P, and S, which caused the sensing curves of WCF to have different shapes for different analytes. This characteristic was also well demonstrated by the WCF-MoS2 composite, which inspired us to realize the discriminative detection only by a single WCF-MoS2 sensor and image recognition technology. What's more, the WCF-MoS2 composite also showed a high sensitivity, a high selectivity, and a rapid response to NH3. The response time and the recovery time to 3 ppm NH3 were about 16 and 5 s, respectively. The detection of limit of WCF-MoS2 for NH3 was 19.1 ppb. This work provides a new idea for the development of sensors and the resource utilization of wool waste.

4.
Front Chem ; 9: 699513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124012

RESUMO

Birnessite nanoflowers composed of layers have been proven to be the strongest adsorbent and oxidant in the surface environment. However, the current synthesis methods of birnessite nanoflowers are suffering from long reaction time and high reaction temperature. Based on these, this paper explores a new method for the rapid and controlled synthesis of layered manganese oxides. The method relies on the molar ratios of KMnO4 and H2O2 redox reacting species to drive the production of birnessite nanoflowers under acidic conditions. The molar ratios of KMnO4 and H2O2 are the key to the crystal structure of the as-prepared. It was found that when the molar ratios of KMnO4 and H2O2 is from 1:1.25 to 1:1.90, the sample is birnessite nanoflowers, and when the ratio is increased to 1:2.0, the sample is a mixture of birnessite nanoflowers and feitknechtite nanoplates. Among the as-prepared samples, BF-1.85 (molar ratios of KMnO4 and H2O2 is 1:1.85) shows the highest capacity for Pb2+ adsorption (2,955 mmol/kg) and greatest degradation efficiency of phenol and TOC. The method proposed herein is economical and controllable, and it yields products with high efficiency for the elimination of inorganic and organic pollutants.

5.
Sci Total Environ ; 791: 148225, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119784

RESUMO

Mn(II) adsorption-oxidation on iron (Fe) oxides (e.g., ferrihydrite) occurs in various soils and sediments, significantly affecting the toxicities and bioavailabilities of Mn and other associated elements. However, the detailed processes of Mn(II) adsorption-oxidation on ferrihydrite remain elusive. In this study, the Mn(II) (2 mM) adsorption-oxidation kinetics on different masses of ferrihydrite (0.25, 0.50, 1.00, and 1.25 g) at pH 7 were determined using batch kinetic studies combined with X-ray diffraction, transmission electron microscopy, and wet chemistry analyses. The results indicated that the low-concentration Mn(II) adsorption-oxidation on ferrihydrite occurred in two steps. First, Mn(II) was adsorbed onto ferrihydrite, where it was partially oxidized by the catalytic effect of ferrihydrite, within ~0-60 min; subsequently, the remaining Mn(II) underwent autocatalytic oxidation on the previously generated Mn (oxyhydr)oxides. The initial adsorption-oxidation behaviors of Mn(II) on the ferrihydrite surface determined the kinetics of Mn(II) removal and oxidation, and therefore the amounts and types of Mn (oxyhydr)oxides formed. Furthermore, the specific characteristics of Mn(II) adsorption-oxidation on ferrihydrite showed a strong dependence on the Fe/Mn molar ratio. When this ratio was below 16.35, the initial process was dominated by Mn(II) adsorption onto ferrihydrite, with slight oxidation generating hausmannite (~0-60 min), followed by the catalytic oxidation of Mn(II) on the formed hausmannite, generating manganite or groutite. Conversely, when the Fe/Mn molar ratio was above 32.7, the reactions primarily involved Mn(II) adsorption onto ferrihydrite with minor oxidation to form Mn(III/IV) (oxyhydr)oxides (~0-60 min), followed by the autocatalytic oxidation of Mn(II) on the freshly-generated Mn(III/IV) (oxyhydr)oxides, forming Mn(III) (oxyhydr)oxides, i.e., feitknechtite. These results provide further insight into the interaction between Fe and Mn, Mn(II) removal, and Mn (oxyhydr)oxide formation in the environment.


Assuntos
Compostos Férricos , Óxidos , Adsorção , Cinética , Oxirredução
6.
RSC Adv ; 9(45): 25951-25956, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35530991

RESUMO

Birnessite is one of the most important manganese oxides that can control the geochemical behaviors of pollutants or can be applied to form industrial products. Many studies have been conducted on the synthesis of hexagonal birnessite because different synthesis methods can affect the structural, morphological, and physicochemical properties of hexagonal birnessite. However, there are still some defects in these synthesis methods. Therefore, a new synthesis method that is rapid, simple, and low-cost was proposed in this study involving the reduction of KMnO4 by H2O2 in a H2SO4 solution without controlling the pH, temperature and pressure. Using a series of XRD, chemical composition, AOS, SSA, SEM, FTIR, and TGA analyses, Bir-H2O2 was found to have lower crystallinity than Bir-HCl. However, the AOS and SSA of Bir-H2O2 were 3.87 and 103 m2 g-1 higher than those of Bir-HCl, i.e., 3.70 and 22 m2 g-1, respectively. Moreover, both Bir-H2O2 and Bir-HCl had similar particle morphology and thermal stability; in addition, the maximum adsorption content of Pb2+ on Bir-H2O2 (∼3006 mmol kg-1) was ∼30% greater than that on Bir-HCl (∼2285 mmol kg-1) at pH 5.5; this indicated that the adsorption of Pb2+ on Bir-H2O2 was better and belonged to a pseudo-second-order model. All the abovementioned results indicate that Bir-H2O2 synthesized herein using the proposed synthesis method can have large application value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA