Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 15(9): 749, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30108338

RESUMO

In the version of this paper originally published online, the ORCID ID for Peter Z. Qin was incorrectly assigned to Zhuoyang Qin. In addition, the ORCID for Fazhan Shi was omitted. These errors have been corrected in the print, PDF, and HTML versions of the paper.

2.
Nat Methods ; 15(9): 697-699, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082898

RESUMO

Magnetic resonance spectroscopy of single biomolecules under near-physiological conditions could substantially advance understanding of their biological function, but this approach remains very challenging. Here we used nitrogen-vacancy centers in diamonds to detect electron spin resonance spectra of individual, tethered DNA duplexes labeled with a nitroxide spin label in aqueous buffer solutions at ambient temperatures. This work paves the way for magnetic resonance studies on single biomolecules and their intermolecular interactions in native-like environments.


Assuntos
DNA/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imagem Individual de Molécula/métodos , Soluções , Água/química
3.
Phys Rev Lett ; 124(24): 247701, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639833

RESUMO

The nitrogen-vacancy (NV) center is a potential atomic-scale spin sensor for electric field sensing. However, its natural susceptibility to the magnetic field hinders effective detection of the electric field. Here we propose a robust electrometric method utilizing continuous dynamic decoupling (CDD) technique. During the CDD period, the NV center evolves in a dressed frame, where the sensor is resistant to magnetic fields but remains sensitive to electric fields. As an example, we use this method to isolate the electric noise from a complex electromagnetic environment near diamond surface via measuring the dephasing rate between dressed states. By reducing the surface electric noise with different covered liquids, we observe an unambiguous relation between the dephasing rate and the relative dielectric permittivity of the liquid, which enables a quantitative investigation of electric noise model near the diamond surface.

4.
Nat Commun ; 14(1): 6278, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805509

RESUMO

An ultimate goal of electron paramagnetic resonance (EPR) spectroscopy is to analyze molecular dynamics in place where it occurs, such as in a living cell. The nanodiamond (ND) hosting nitrogen-vacancy (NV) centers will be a promising EPR sensor to achieve this goal. However, ND-based EPR spectroscopy remains elusive, due to the challenge of controlling NV centers without well-defined orientations inside a flexible ND. Here, we show a generalized zero-field EPR technique with spectra robust to the sensor's orientation. The key is applying an amplitude modulation on the control field, which generates a series of equidistant Floquet states with energy splitting being the orientation-independent modulation frequency. We acquire the zero-field EPR spectrum of vanadyl ions in aqueous glycerol solution with embedded single NDs, paving the way towards in vivo EPR.

5.
Sci Adv ; 6(22): eaaz8244, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32766444

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is among the most important analytical tools in physics, chemistry, and biology. The emergence of nitrogen-vacancy (NV) centers in diamond, serving as an atomic-sized magnetometer, has promoted this technique to single-spin level, even under ambient conditions. Despite the enormous progress in spatial resolution, the current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information. A major challenge is the short coherence times of the sample electron spins. Here, we address this challenge by using a magnetic noise-insensitive transition between states of different symmetry. We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen (P1) centers in diamond with a linewidth of several kilohertz, and then some weak couplings can be resolved. Those results show both spatial and spectral advances of NV center-based EPR and provide a route toward analytical (EPR) spectroscopy at the single-molecule level.

6.
Nat Commun ; 9(1): 1563, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674638

RESUMO

Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry, and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA