Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Plant Physiol ; 195(1): 479-501, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227428

RESUMO

Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.


Assuntos
Citrus , Etilenos , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Giberelinas/metabolismo , Citrus/genética , Citrus/fisiologia , Citrus/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/crescimento & desenvolvimento , Liases/metabolismo , Liases/genética
2.
Plant Physiol ; 192(3): 1947-1968, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913259

RESUMO

Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.


Assuntos
Citrus , Giberelinas , Giberelinas/farmacologia , Giberelinas/metabolismo , Citrus/genética , Citrus/metabolismo , Etilenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Ecotoxicology ; 33(8): 849-858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39001972

RESUMO

The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.


Assuntos
Cádmio , Microbioma Gastrointestinal , Caramujos , Animais , Cádmio/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , RNA Ribossômico 16S , Morus , Folhas de Planta
4.
Nano Lett ; 23(12): 5851-5858, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37067172

RESUMO

The ultrasmall mode volume and ultralarge local field enhancement of compact plasmonic nanocavities have been widely explored to amplify a variety of optical phenomena at the nanoscale. Other than passively generating near-field enhancements, dynamic tuning of their intensity and associated nonlinear optical processes such as second-harmonic generation (SHG) play vital roles in the field of active nanophotonics. Here we apply a host-guest molecular complex to construct a photoswitchable molecule-sandwiched metallic particle-on-film nanocavity (MPoFN) and demonstrate both light-controlled linear and nonlinear optical tuning. Under alternating illumination of ultraviolet (UV) and visible light, the photoactive plasmonic molecular nanocavity shows reversible switching of both surface-enhanced Raman scattering (SERS) and plasmon resonance. Surprisingly, we observe more significant modulation of SHG from this photoactive MPoFN, which can be explained qualitatively by the quantum conductivity theory (QCT). Our study could pave the way for developing miniaturized integrated optical circuits for ultrafast all-optical information processing and communication.

5.
Phys Chem Chem Phys ; 25(13): 9586-9591, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36942521

RESUMO

A tunable near-perfect nonreciprocal thermal emitter, consisting of a dielectric plane and a monolayer graphene sandwiched between a subwavelength grating and a Weyl semimetal plane, is proposed and investigated. Near-complete nonreciprocal radiation can be achieved at resonance, breaking the traditional Kirchhoff's law. The underlying physical mechanism, resulting from a guided mode resonance, is disclosed by illustrating the magnetic field distribution. Moreover, the strong nonreciprocity remains well within a wide range of geometrical parameters. What's more, the performance of the near-perfect spectral nonreciprocity can be flexibly controlled in a wide spectral range through varying the Fermi level of graphene and the axial vector of the Weyl semimetal, which reduces the cost and should be interesting for real application. The conclusions of this paper should prompt the further development of tunable nonreciprocal thermal emitters.

6.
Phys Chem Chem Phys ; 25(16): 11477-11483, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37038764

RESUMO

The giant enhancement of multi-band nonreciprocal radiation based on the Weyl semimetal-dielectric spacer-Thue-Morse multilayer-metallic mirror structure, is investigated. As an illustration, a novel dual-band nonreciprocal thermal emitter based on the proposed scheme is designed and studied. The results show that two pairs of nonoverlapping absorptivity and emissivity spectra could be realized, which results in the realization of strong dual-band nonreciprocal radiation. The physical origin behind this phenomenon is revealed by the amplitude distribution of the magnetic field and confirmed by impedance matching theory. The dependence of the nonreciprocal radiation properties on the incident angle and the structure dimensions is investigated, and it is shown that the nonreciprocal performance remains stable in a large range of dimensions, which lowers the costs of fabrication. In addition, a multi-band nonreciprocal thermal emitter with a band number larger than two can be easily achieved by increasing the generation of the Thue-Morse multilayer. It is believed that the proposed scheme will promote the development of novel multi-band nonreciprocal thermal emitters.

7.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38063224

RESUMO

A dual-channel thermal emitter, which is composed of an InAs layer atop an aluminum grating backed with a continuous aluminum film, is proposed and studied. Two resonant absorption and emission peaks are achieved at different wavelengths, leading to the achievement of dual-channel strong nonreciprocal radiations at two different wavelengths for an applied magnetic field of 2 T when the angle of incidence is 17°. The physical origin is revealed through illustrating the electromagnetic field distributions at both resonances and also verified through impedance matching. In addition, the perfect nonreciprocity remains stable within a wide range of structure parameters, lowering the cost of manufacture. Moreover, the nonreciprocal radiations for different incident angles and different magnetic fields are also investigated in detail. The concept and conclusions proposed here will be interesting for the development of novel energy conversion and capture devices.

8.
J Environ Manage ; 345: 118823, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673005

RESUMO

With the rapid growth of the construction industry and urbanization, the construction and demolition waste (CDW) has constituted the most major solid waste flow in the world. The unsustainable management of CDW causes serious societal and environmental issues, as well as leads to resource waste, which directly and indirectly impact on United Nations' Sustainable Development Goals (SDGs). Due to the awareness of the destructive effect by CDW, the academic and industry have devoted to offer a sustainable pathway for CDWM, which characterizes minimizing carbon footprints as well as proposing circular approaches. In this context, CDW can be reused, recycled and recovery as a value resource. Therefore, this study proposed a unique research method that combines qualitative and quantitative approaches in the form of bigdata analysis and machine learning, which aims to explore the CDWM related knowledge and innovation from academic and industrial perspective respectively. Especially, what is different trends in CDWM-related of academia and industry between pre- and post-SDGs declaration era(s)? What aspects of SDGs have been addressed by academia and industry in pre- and post-SDGs declaration era(s)? The study witnessed that a 350% increase in the growth of academic literature and a 278% increase in the growth in industrial patents compared to pre-SDGs declaration period. In the academia, the emerging topics of research has shifted to management, circular economy, life cycle assessment, and ETC. Similarly, patent citation illustrated that the attention of stakeholders on CDWM in the construction industry has shifted from a linear point to a circular view. Moreover, the result showed that SDG6 (Clean Water and Sanitation), SDG12 (Responsible Consumption and Production) and SDG11 (Sustainable Cities and Communities) have noted as most seriously addressed concerns by academia and industry.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Desenvolvimento Sustentável , Pegada de Carbono , Cidades
9.
Phys Chem Chem Phys ; 24(38): 23382-23390, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36128914

RESUMO

The strong coupling of excitons in few-layer transition-metal dichalcogenide (TMDC) with guided mode resonance (GMR) and bound state in the continuum (BIC) is investigated. It is shown that the strong coupling between excitons and GMR or BIC can enable a large Rabi splitting, where up to 155 meV or 162 meV Rabi splitting could be realized through changing the grating period, respectively. The physical origins behind this behavior are revealed by studying the electric field distributions at resonance. In addition, such behaviors are further theoretically verified according to the coupled-oscillator model. Moreover, the effect of the geometric dimensions on the strong coupling is also studied, which can be employed to guide real fabrication. The results will provide a new route for realization of few-layer TMDC-based light-matter interactions and may pave the way toward novel, compact, few-layer TMDC-based polaritonic devices.

10.
Opt Express ; 28(23): 34904-34915, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182948

RESUMO

We theoretically and numerically investigate the ligh-matter interaction in a classic topological photonic crystal (PhC) heterostructure, which consists of two opposite-facing 4-period PhCs spaced by a dielectric layer. Due to the excitation of topological edge mode (TEM) at the interface of the two PhCs, the strong coupling between incident light and TEM produces a high quality resonance peak, which can be applied to many optical devices. As a refractive index sensor, it achieves a sensitivity of 254.5 nm/RIU and a high figure of merit (> 250), which is superior to many previously reported sensors. We further study the coupling between photons and excitons by replacing the pure dielectric layer with the J-aggregates doped layer. By tuning the thickness of the doped layer and the angle of incident light, the dispersive TEM can efficiently interact with the molecular excitons to form a hybrid mode with TEM-like or exciton-like components, showing interesting energy transfer characteristics and flexible modulation characteristics. This work may be helpful for a better understanding of light-matter interactions in a topological PhC heterostructure, and achieve potential applications in related optical devices.

11.
J Environ Sci (China) ; 92: 28-37, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430131

RESUMO

Photocatalytic disinfection has long been used to combat pathogenic bacteria. However, the specific mechanism underlying photocatalytic disinfection and its corresponding targets remain unclear. In this study, an analysis of the potential mechanism underlying photocatalytic disinfection was performed based on integrated metabolic networks and transcriptional data. Two sets of RNA-seq data (wild type and a photocatalysis-resistant mutant mediated by titanium dioxide (TiO2)) were processed to constrain the genome scale metabolic models (GSMM) of E. coli. By analyzing the metabolic network, the differential metabolic flux of every reaction was computed in constrained GSMM, and several significantly differential metabolic fluxes in reactions were extracted and analyzed. Most of these reactions were involved in the transmembrane transport of substances and occurred on the inner membrane or were an important component of the cell membrane. These results, which are consistent with the reported information, validated our analysis process. In addition, our work also identified other new and valuable metabolic pathways, such as the reaction ALCD2x, which has a great effect on the energy production process under bacterial anaerobic conditions. The DHAK reaction is also related to the metabolic process of ATP. These reactions with large differential metabolic fluxes merit further research. Additionally, to provide a strategy to address photocatalysis-resistant mutant bacteria, a metabolic compensation analysis was also performed. The metabolic compensation analysis results provided suggestions for a combined method that can effectively combat resistant bacteria. This method could also be used to explore the mechanisms of drug resistance in other microorganisms.


Assuntos
Desinfecção , Escherichia coli , Bactérias , Catálise , Redes e Vias Metabólicas , Fosfotransferases (Aceptor do Grupo Álcool) , Titânio
12.
Opt Express ; 27(4): 5253-5263, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876126

RESUMO

Optical switches based on dielectric nanostructures are highly desired at present. To enhance the wavelength-selective light absorption, and achieve an absorption-induced switching effect, here we propose a graphene-based metamaterial absorber that consists of a dielectric grating, a graphene monolayer, and a photonic crystal. Numerical results reveal that the dual-band absorption with an ultranarrow spectrum of the system is enhanced greatly due to the critical coupling, which is enabled by the combined effects of guided mode resonances and photonic band gap. The quality factor of the absorber can achieve a high value (>500), which is basically consistent with the coupled mode theory. Slow light emerges within the absorption window. In addition, electrostatic gating of graphene in the proposed structure provides dynamic control of the absorption due to the change of the chemical potential of the graphene, resulting in an optional multichannel switching effect. Unlike other one-dimensional devices, these effects can be applied to another polarization without changing the structure parameters, and the quality factor is significantly enhanced (>1000). The tunable light absorption offered by the simple structure with an all-dielectric configuration will provide potential applications for graphene-based optoelectronic devices in the near-infrared range, such as narrowband selective filters, detectors, optical switches, modulators, slow optical devices, etc.

13.
Opt Lett ; 44(12): 3118-3121, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199395

RESUMO

An angle-insensitive dual-functional resonator composed of a compound metallic grating is proposed and characterized numerically. The resonator exhibits different response characteristics for TE and TM polarization, thus enabling two functions, corresponding to a high-sensitivity sensor and a low Q-factor absorber. For TE polarization, the Q-factor, refractive index sensitivity, and figure of merit of the resonator can reach 283.4, 2577.6 nm/RIU, and 181.5 RIU-1, respectively, due to the excitation of cavity mode resonance. For TM polarization, the resonator can be regarded as an absorber with high absorptivity (>97%) based on magnetic resonance. Accordingly, these two mechanisms can be explained well by the waveguide theory and inductor-capacitor circuit model. The electromagnetic fields in the system can be selectively concentrated in the cavity or slit by simply adjusting the polarization angle, exhibiting unique energy localization characteristics. The resonator can also exhibit polarization-sensitive behavior due to the different bandwidths for the same wavelength. This simple structure provides a good paradigm for designing high-performance multi-functional devices.

14.
Opt Lett ; 44(13): 3302-3305, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259945

RESUMO

A hybrid Tamm plasmonic system is proposed to investigate light manipulation at near-infrared frequency. The numerical results reveal that two remarkable absorption peaks are generated due to the different types of resonant modes excited in the structure, which can be well explained theoretically by guided-mode resonance (GMR) and Tamm plasmon polaritons. It is found that the electromagnetic energy can be easily trapped in different parts of the structure. More importantly, strong interaction between the two modes can be achieved by adjusting the structure period or incident angle, resulting in obvious mode hybridization and exhibiting unique energy-transfer characteristics. In addition, the active modulation of GMR-based absorption can be controlled in a continuous type by tuning the polarization angle or in a jump type by adjusting the chemical potential of graphene. This work should be useful for developing many high-performance optoelectronic devices, including sensors, modulators, detectors, etc.

15.
Opt Lett ; 44(7): 1690-1693, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933123

RESUMO

Distributed acoustic sensing (DAS) technology based on Rayleigh backscattering is experiencing a rapid development and leading itself into wider applications because of the unique capability of measuring sound and vibrations at all points along the sensing fiber. However, most implementations of DAS provide the position of detected sources as a function of distance within the one-dimensional axial space along the sensing fiber. A DAS system with the capability of two-dimensional (2D) and three-dimensional (3D) acoustic source localization in air is demonstrated that uses array signal processing to deal with the spatial correlation of the information measured by optical fiber. Preliminary work has demonstrated 2D acoustic source localization for multi-targets with a narrowband signal source of the same frequency and 3D position for a moving narrowband acoustic source. The results establish a new method which opens up new areas of applications of DAS such as location and identification for static, dynamic, and multiple targets in air or water.

16.
J Pharmacol Exp Ther ; 367(1): 95-100, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076262

RESUMO

Acetaminophen is commonly used to reduce pain and fever. Unfortunately, overdose of acetaminophen is a leading cause of acute liver injury and failure in many developed countries. The majority of acetaminophen is safely metabolized in the liver and excreted in the urine; however, a small percentage is converted to the highly reactive N-acetyl-p-benzoquinone imine (NAPQI). At therapeutic doses, NAPQI is inactivated by glutathione S-transferases, but at toxic levels, excess NAPQI forms reactive protein adducts that lead to hepatotoxicity. Individual variability in the response to both therapeutic and toxic levels of acetaminophen suggests a genetic component is involved in acetaminophen metabolism. In this review, we evaluate the genetic association studies that have identified 147 single nucleotide polymorphisms linked to acetaminophen-induced hepatotoxicity. The identification of novel genetic markers for acetaminophen-induced hepatotoxicity provides a rich resource for further evaluation and may lead to improved prognosis, prevention, and treatment.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Animais , Benzoquinonas/farmacologia , Glutationa/metabolismo , Humanos , Iminas/farmacologia , Fígado/metabolismo
17.
Opt Express ; 26(25): 32442-32450, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645411

RESUMO

A metamaterial perfect absorber composed of a black phosphorus (BP) monolayer, a photonic crystal, and a metallic mirror is designed and investigated to enhance light absorption at terahertz frequencies. Numerical results reveal that the absorption is enhanced greatly with narrow spectra due to critical coupling, which is enabled by guided resonances. Intriguingly, the structure manifests the unusual polarization-dependent feature attributable to the anisotropy of black phosphorus. The quality factor of the absorber can be as high as 95.1 for one polarization while 63.5 for another polarization, which is consistent with the coupled wave theory. The absorption is tunable by varying key parameters, such as period, radius, slab thickness, incident angle, and polarization angle. Furthermore, the state of the system (i.e., critical coupling, over coupling, and under coupling) can be tuned by changing the electron doping of BP, thus achieving various applications. This work offers a paradigm to enhance the light-matter interaction in monolayer BP without plasmonic response, and this easy-to-fabricate structure will provide potential applications in BP-based devices.

18.
Opt Lett ; 43(20): 4985-4988, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320800

RESUMO

We propose a black phosphorus-spacer-metallic grating hybrid system to investigate the strong coupling between black phosphorus surface plasmons (BPSP) and magnetic plasmons (MP) at far-infrared frequencies. We theoretically and numerically illustrate interactions between the BPSP mode and MP mode in the coupling regime, which leads to a prominent Rabi splitting and the formation of multiple hybrid modes. Since the mechanisms of the two resonance modes are completely different, the fields in the system can be selectively localized in the spacer layer or metallic slits by regulating the coupling between such modes. Due to the strong anisotropic in-plane properties of black phosphorus (BP), the coupling between BPSP and MP modes in both armchair and zigzag directions is quite different. This work offers a new paradigm to enhance the light-matter interaction through the coupling of multiple resonance modes, and the proposed device will provide potential applications in constructing easy-to-fabricate BP-based plasmonic devices.

19.
Molecules ; 23(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567313

RESUMO

Japanese encephalitis is a zoonotic disease caused by the Japanese encephalitis virus (JEV). It is mainly epidemic in Asia with an estimated 69,000 cases occurring per year. However, no approved agents are available for the treatment of JEV infection, and existing vaccines cannot control various types of JEV strains. Drug repurposing is a new concept for finding new indication of existing drugs, and, recently, the concept has been used to discover new antiviral agents. Identifying host proteins involved in the progress of JEV infection and using these proteins as targets are the center of drug repurposing for JEV infection. In this study, based on the gene expression data of JEV infection and the phenome-wide association study (PheWAS) data, we identified 286 genes that participate in the progress of JEV infection using systems biology methods. The enrichment analysis of these genes suggested that the genes identified by our methods were predominantly related to viral infection pathways and immune response-related pathways. We found that bortezomib, which can target these genes, may have an effect on the treatment of JEV infection. Subsequently, we evaluated the antiviral activity of bortezomib using a JEV-infected mouse model. The results showed that bortezomib can lower JEV-induced lethality in mice, alleviate suffering in JEV-infected mice and reduce the damage in brains caused by JEV infection. This work provides an agent with new indication to treat JEV infection.


Assuntos
Reposicionamento de Medicamentos/métodos , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/tratamento farmacológico , Biologia de Sistemas/métodos , Algoritmos , Animais , Antivirais/uso terapêutico , Bortezomib/uso terapêutico , Camundongos , Replicação Viral/efeitos dos fármacos
20.
Molecules ; 22(6)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28587109

RESUMO

Oxidative damage can lead to a wide range of diseases. Nrf2 is an important transcription factor that regulates many of the cytoprotective enzymes involved in the oxidative stress response. Therefore, targeting the regulation of Nrf2 activation is one logical and effective strategy to prevent or lower the risk of oxidative stress-related diseases. Until now, most research has focused on electrophilic indirect Nrf2 activators, but the risk of 'off-target' effects may be associated with these activators. To find novel small non-electrophilic modulators of Nrf2, we started from chemical agents derived from a connectivity map (cMap) and identified 22 non-electrophilic potential Nrf2-activating drugs through a drug repositioning tactic. By determining the expression changes of antioxidant genes in MCF7 cells that were treated with the potential Nrf2 activators using quantitative real-time polymerase chain reaction RT-PCR (real-time polymerase chain reaction) (qRT-PCR), astemizole was found to have a greater scale of upregulating antioxidant genes NQO1, HO-1, and GCLM than the positive control d,l-sulforaphane, although the testing concentration was lower than that of the control. Astemizole is a good potential redox regulator and deserves more pharmacodynamic experimentation to test and verify its feasibility for use as an Nrf2 activator.


Assuntos
Descoberta de Drogas , Fator 2 Relacionado a NF-E2/agonistas , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA