Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Cell ; 154(4): 775-88, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23932120

RESUMO

RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between individual regions and other protein complexes. Using splicing microarrays and mutants that alter elongation rates in vitro, we found an inverse relationship between RNAPII speed and in vivo splicing efficiency. Furthermore, the pE-MAP classified fast and slow mutants that favor upstream and downstream start site selection, respectively. The striking coordination of polymerization rate with transcription initiation and splicing suggests that transcription rate is tuned to regulate multiple gene expression steps. The pE-MAP approach provides a powerful strategy to understand other multifunctional machines at amino acid resolution.


Assuntos
Epistasia Genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alelos , Estudo de Associação Genômica Ampla , Mutação Puntual , RNA Polimerase II/química , Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Transcriptoma
3.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214235

RESUMO

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Assuntos
Pirrolidinonas , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Pirrolidinonas/farmacologia , RNA Polimerase II/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Zinco
4.
PLoS Comput Biol ; 19(3): e1010999, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947548

RESUMO

Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , Simulação de Dinâmica Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação , RNA Polimerases Dirigidas por DNA/metabolismo
5.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177619

RESUMO

Single-photon avalanche diodes (SPADs) are novel image sensors that record photons at extremely high sensitivity. To reduce both the required sensor area for readout circuits and the data throughput for SPAD array, in this paper, we propose a snapshot compressive sensing single-photon avalanche diode (CS-SPAD) sensor which can realize on-chip snapshot-type spatial compressive imaging in a compact form. Taking advantage of the digital counting nature of SPAD sensing, we propose to design the circuit connection between the sensing unit and the readout electronics for compressive sensing. To process the compressively sensed data, we propose a convolution neural-network-based algorithm dubbed CSSPAD-Net which could realize both high-fidelity scene reconstruction and classification. To demonstrate our method, we design and fabricate a CS-SPAD sensor chip, build a prototype imaging system, and demonstrate the proposed on-chip snapshot compressive sensing method on the MINIST dataset and real handwritten digital images, with both qualitative and quantitative results.

6.
J Biol Chem ; 296: 100485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662401

RESUMO

Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homeostase , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
8.
Sensors (Basel) ; 21(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561972

RESUMO

We propose and demonstrate an anti-jamming system to defend against wideband jamming attack. Free space optical communication is deployed to provide a reference for jamming cancellation. The mixed signal is processed and separated with photonic signal processing method to achieve large bandwidth. As an analog signal processing method, the cancellation system introduces zero latency. The radio frequency signals are modulated on optical carriers to achieve wideband and unanimous frequency response. With wideband and zero latency, the system meets the key requirements of high speed and real-time communications in transportation systems.

9.
Microb Cell Fact ; 19(1): 146, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690010

RESUMO

BACKGROUND: With the development of engineering the microbial cell factories, biosensors have been used widely for regulation of cellular metabolism and high-throughput screening. However, most of the biosensors constructed in Saccharomyces cerevisiae are designed for transcriptional activation. Very few studies have dedicated to the development of genetic circuit for repressive regulation, which is also indispensable for the dynamic control of metabolism. RESULTS: In this study, through transcriptional deactivation design, we developed transcription-factor-based biosensors to allow repressive regulation in response to ligand. Using a malonyl-CoA sensing system as an example, the biosensor was constructed and systematically engineered to optimize the dynamic range by comparing transcriptional activity of the activators, evaluating the positions and numbers of the operators in the promoter and comparing the effects of different promoters. A biosensor with 82% repression ratio was obtained. Based on this design principle, another two biosensors, which sense acyl-CoA or xylose and downregulate gene expression, were also successfully constructed. CONCLUSIONS: Our work systematically optimized the biosensors for repressive regulation in yeast for the first time. It provided useful framework to construct similar biosensors. Combining the widely reported biosensors for transcriptional activation with the biosensors developed here, it is now possible to construct biosensors with opposing transcriptional activities in yeast.


Assuntos
Técnicas Biossensoriais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Engenharia Genética , Malonil Coenzima A/metabolismo , Engenharia Metabólica , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética , Xilose/genética , Xilose/metabolismo
10.
Methods ; 159-160: 115-123, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797033

RESUMO

Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Polimerase II/metabolismo , Transcrição Gênica , Eucariotos/genética , Eucariotos/metabolismo
11.
FEMS Yeast Res ; 19(8)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778177

RESUMO

Engineering microbial cell factories is a potential approach of sustainable production of chemicals, fuels and pharmaceuticals. However, testing the production of molecules in high throughput is still a time-consuming and laborious process since product synthesis usually does not confer a clear phenotype. Therefore, it is necessary to develop new techniques for fast high-producer screening. Genetically encoded biosensors are considered to be promising devices for high-throughput analysis owing to their ability to sense metabolites and couple detection to an actuator, thereby facilitating the rapid detection of small molecules at single-cell level. Here, we review recent advances in the design and engineering of biosensors in Saccharomyces cerevisiae, and their applications in metabolic engineering. Three types of biosensor are introduced in this review: transcription factor based, RNA-based and enzyme-coupled biosensors. The studies to improve the features of biosensors are also described. Moreover, we summarized their metabolic engineering applications in dynamic regulation and high producer selection. Current challenges in biosensor design and future perspectives on sensor applications are also discussed.


Assuntos
Técnicas Biossensoriais , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
12.
Nucleic Acids Res ; 45(8): 4431-4451, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28119420

RESUMO

Here we employ a set of RNA Polymerase II (Pol II) activity mutants to determine the consequences of increased or decreased Pol II catalysis on gene expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, either fast or slow, leads to decreased Pol II occupancy and apparent reduction in elongation rate in vivo. However, we also find that determination of elongation rate in vivo by chromatin immunoprecipitation can be confounded by the kinetics and conditions of transcriptional shutoff in the assay. We identify promoter and template-specific effects on severity of gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the magnitude of half-life changes correlate both with mutants' growth and reporter expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells to nucleotide depletion. In contrast to model predictions, mutated Pol II retains normal sensitivity to altered nucleotide levels. Our experiments establish a framework for understanding the diversity of transcription defects derived from altered Pol II activity mutants, essential for their use as probes of transcription mechanisms.


Assuntos
RNA Polimerase II/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Biocatálise , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Meia-Vida , Mutação , Nucleotídeos/deficiência , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética , Sítio de Iniciação de Transcrição
13.
PLoS Genet ; 12(11): e1006321, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898685

RESUMO

The active sites of multisubunit RNA polymerases have a "trigger loop" (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins.


Assuntos
Proteínas Mutantes/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Alelos , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Proteínas Mutantes/química , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico/genética , RNA Polimerase II/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
14.
FEMS Yeast Res ; 17(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28582494

RESUMO

The rapid co-fermentation of both glucose and xylose is important for the efficient conversion of lignocellulose biomass into fuels and chemicals. Saccharomyces cerevisiae is considered to be a potential cell factory and has been used to produce various fuels and chemicals, but it cannot metabolize xylose, which has greatly limited the utilization of lignocellulose materials. Therefore, numerous studies have attempted to develop xylose fermenting strains in past decades. The simple introduction of the xylose metabolic pathway does not enable yeast to rapidly utilize xylose, and several limitations still need to be addressed, including glucose repression and slow xylose transport, cofactor imbalance in the xylose reductase/xylitol dehydrogenase pathway, functional expression of a heterologous xylose isomerase, the low efficiency of downstream pathways and low ethanol production. In this review, we will discuss strategies to overcome these limitations and the recent progress in engineering xylose fermenting S. cerevisiae strains.


Assuntos
Glucose/metabolismo , Lignina/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Fermentação , Regulação da Expressão Gênica , Microbiologia Industrial , Cinética , Saccharomyces cerevisiae/genética , Transgenes
15.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4702-4719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38261484

RESUMO

Scene-dependent adaptive compressive sensing (CS) has been a long pursuing goal that has huge potential to significantly improve the performance of CS. However, with no access to the ground truth, how to design the scene-dependent adaptive strategy is still an open problem. In this paper, a restricted isometry property (RIP) condition-based error-clamping is proposed, which could directly predict the reconstruction error, i.e., the difference between the current-stage reconstructed image and the ground truth image, and adaptively allocate more samples to regions with larger reconstruction error at the next sampling stage. Furthermore, we propose a CS reconstruction network composed of Progressively inverse transform and Alternating Bi-directional Multi-grid Network, named PiABM-Net, that could efficiently utilize the multi-scale information for reconstructing the target image. The effectiveness of the proposed adaptive and cascaded CS method is demonstrated with extensive quantitative and qualitative experiments, compared with the state-of-the-art CS algorithms.

16.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293233

RESUMO

RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL and identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating epistasis between the TL and its surrounding context. We sought to understand the nature of this incompatibility and probe higher order epistasis internal to the TL. We have employed deep mutational scanning with selected natural TL variants ("haplotypes"), and all possible intermediate substitution combinations between them and the yeast Pol II TL. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.

17.
Food Chem ; 450: 139285, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631203

RESUMO

Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.


Assuntos
Biflavonoides , Catequina , Catecol Oxidase , Biflavonoides/química , Biflavonoides/metabolismo , Biocatálise , Catequina/química , Catequina/metabolismo , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
18.
Front Cell Dev Biol ; 12: 1343962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628595

RESUMO

Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.

19.
Front Psychiatry ; 15: 1358726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505791

RESUMO

Introduction: Some clinical studies have shown that music therapy as an adjunctive therapy can improve overall symptoms in patients with schizophrenia. However, the neural mechanisms of this improvement remain unclear due to insufficient neuroimaging evidence. Methods: In this work, 17 patients with schizophrenia accepted a five-week music therapy (music group) that integrated listening, singing, and composing, and required patients to cooperate in a group to complete music therapy tasks. Meanwhile, 15 patients with schizophrenia received a five-week visual art intervention as the control group including handicraft and painting activities. We collected the Manchester Scale (MS) and Positive and Negative Symptom Scale (PANSS) scores and electroencephalography (EEG) data before and after intervention in two groups. Results: Behavioral results showed that both interventions mentioned above can effectively help patients with schizophrenia relieve their overall symptoms, while a trend-level effect was observed in favor of music therapy. The EEG results indicated that music therapy can improve abnormal neural oscillations in schizophrenia which is reflected by a decrease in theta oscillation in the parietal lobe and an increase in gamma oscillation in the prefrontal lobe. In addition, correlation analysis showed that in the music group, both reductions in theta oscillations in the parietal lobe and increases in gamma oscillations in the prefrontal lobe were positively correlated with the improvement of overall symptoms. Discussion: These findings help us to better understand the neural mechanisms by which music therapy improves overall symptoms in schizophrenia and provide more evidence for the application of music therapy in other psychiatric disorders.

20.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622115

RESUMO

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Assuntos
Proteínas de Ciclo Celular , Proteômica , Ciclo Celular/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Estabilidade Proteica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA