Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Nature ; 601(7892): 205-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022592

RESUMO

Fermi liquid theory forms the basis for our understanding of the majority of metals: their resistivity arises from the scattering of well defined quasiparticles at a rate where, in the low-temperature limit, the inverse of the characteristic time scale is proportional to the square of the temperature. However, various quantum materials1-15-notably high-temperature superconductors1-10-exhibit strange-metallic behaviour with a linear scattering rate in temperature, deviating from this central paradigm. Here we show the unexpected signatures of strange metallicity in a bosonic system for which the quasiparticle concept does not apply. Our nanopatterned YBa2Cu3O7-δ (YBCO) film arrays reveal linear-in-temperature and linear-in-magnetic field resistance over extended temperature and magnetic field ranges. Notably, below the onset temperature at which Cooper pairs form, the low-field magnetoresistance oscillates with a period dictated by the superconducting flux quantum, h/2e (e, electron charge; h, Planck's constant). Simultaneously, the Hall coefficient drops and vanishes within the measurement resolution with decreasing temperature, indicating that Cooper pairs instead of single electrons dominate the transport process. Moreover, the characteristic time scale τ in this bosonic system follows a scale-invariant relation without an intrinsic energy scale: h/τ ≈ a(kBT + γµBB), where h is the reduced Planck's constant, a is of order unity7,8,11,12, kB is Boltzmann's constant, T is temperature, µB is the Bohr magneton and γ ≈ 2. By extending the reach of strange-metal phenomenology to a bosonic system, our results suggest that there is a fundamental principle governing their transport that transcends particle statistics.


Assuntos
Elétrons , Supercondutividade , Campos Magnéticos , Metais , Temperatura
2.
Nature ; 582(7811): E5, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32461695

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 576(7785): 91-95, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802014

RESUMO

Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste1. Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys1. (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable2.) Attempts to optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titanium grains3. In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium-copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium-copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries.

4.
Proc Natl Acad Sci U S A ; 119(29): e2205827119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858338

RESUMO

Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.

5.
Anal Chem ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319065

RESUMO

Deep understanding of the bubble nucleation process is universally important in systems, from chemical engineering to materials. However, due to its nanoscale and transient nature, effective probing of nucleation behavior with a high spatiotemporal resolution is prohibitively challenging. We previously reported the measurement of a single nanobubble nucleation at a nanoparticle using scanning electrochemical cell microscopy, where the bubble nucleation and formation were inferred from the voltammetric responses. Here, we continue the study of heterogeneous bubble nucleation at interfaces by regulating the local nanostructures using silica nanoparticles with a distinct surface morphology. It is demonstrated that, compared to the smooth spherical silica nanoparticles, the raspberry-like nanoparticles can further significantly reduce the nucleation energy barrier, with a critical peak current about 23% of the bare carbon surfaces. This study advances our understanding of how surface nanostructures direct the heterogeneous nucleation process and may offer a new strategy for surface engineering in gas involved energy conversion systems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39189066

RESUMO

BACKGROUND: Redo-transcatheter aortic valve replacement (TAVR) is a promising treatment for transcatheter aortic valve degeneration, becoming increasingly relevant with an aging population. In redo-TAVR, the leaflets of the initial (index) transcatheter aortic valve (TAV) are displaced vertically when the second TAV is implanted, creating a cylindrical cage that can impair coronary cannulation and flow. Preventing coronary obstruction and maintaining coronary access is essential, especially in young and low-risk patients undergoing TAVR. This study aimed to develop a new leaflet modification strategy using laser ablation to prevent coronary obstruction and facilitate coronary access after repeat TAVR. METHODS: To evaluate the feasibility of the leaflet modification technique using laser ablation, the initial phase of this study involved applying a medical-grade ultraviolet laser for ablation through pericardial tissue. Following this intervention, computational fluid dynamics simulations were utilized to assess the efficacy of the resulting perforations in promoting coronary flow. These simulations played a crucial role in understanding the impact of the modifications on blood flow patterns, ensuring these changes would facilitate the restoration of coronary circulation. RESULTS: Laser ablation of pericardium leaflets was successful, demonstrating the feasibility of creating openings in the TAV leaflets. Flow simulation results show that ablation of index valve leaflets can effectively mitigate the flow obstruction caused by sinus sequestration in redo-TAVR, with the extent of restoration dependent on the number and location of the ablated openings. CONCLUSIONS: Laser ablation could be a viable method for leaflet modification in redo-TAVR, serving as a new tool in interventional procedures.

7.
J Headache Pain ; 25(1): 148, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261750

RESUMO

BACKGROUND: Migraine is a highly prevalent and complex neurovascular disease. However, the currently available therapeutic drugs often fall to adequately meet clinical needs due to limited effectiveness and numerous undesirable side effects. This study aims to identify putative novel targets for migraine treatment through proteome-wide Mendelian randomization (MR). METHODS: We utilized MR to estimate the causal effects of plasma proteins on migraine and its two subtypes, migraine with aura (MA) and without aura (MO). This analysis integrated plasma protein quantitative trait loci (pQTL) data with genome-wide association studies (GWAS) findings for these migraine phenotypes. Moreover, we conducted a phenome-wide MR assessment, enrichment analysis, protein-protein interaction networks construction, and mediation MR analysis to further validate the pharmaceutical potential of the identified protein targets. RESULTS: We identified 35 protein targets for migraine and its subtypes (p < 8.04 × 10-6), with prioritized targets showing minimal side effects. Phenome-wide MR identified novel protein targets-FCAR, UBE2L6, LATS1, PDCD1LG2, and MMP3-that have no major disease side effects and interacted with current acute migraine medication targets. Additionally, MMP3, PDCD1LG2, and HBQ1 interacted with current preventive migraine medication targets. The causal effects of plasma protein on migraine were partly mediated by plasma metabolites (proportion of mediation from 3.8% to 21.0%). CONCLUSIONS: A set of potential protein targets for migraine and its subtypes were identified. These proteins showed rare side effects and were responsible for biological mechanisms involved in migraine pathogenesis, indicating priority for the development of migraine treatments.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteoma , Locos de Características Quantitativas , Humanos , Proteoma/efeitos dos fármacos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/sangue , Mapas de Interação de Proteínas/genética , Enxaqueca com Aura/genética , Enxaqueca com Aura/tratamento farmacológico , Enxaqueca com Aura/sangue , Enxaqueca sem Aura/genética , Enxaqueca sem Aura/tratamento farmacológico , Enxaqueca sem Aura/sangue , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
8.
J Headache Pain ; 25(1): 110, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977951

RESUMO

BACKGROUND: New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS: This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS: Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS: Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.


Assuntos
Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Transtornos da Cefaleia/diagnóstico por imagem , Transtornos da Cefaleia/patologia , Neuritos/patologia
9.
Biomacromolecules ; 24(5): 2075-2086, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37018617

RESUMO

Development of bioactive bone and joint implants that offer superior mechanical properties to facilitate personalized surgical procedures remains challenging in the field of biomedical materials. As for the hydrogel, mechanical property and processability are major obstructions hampering its application as load-bearing scaffolds in orthopedics. Herein, we constructed implantable composite hydrogels with appealing processability and ultrahigh stiffness. Central to our design is the incorporation of a thixotropic composite network into an elastic polymer network via dynamic interactions to synthesize a percolation-structured double-network (DN) hydrogel with plasticity, followed by in situ strengthening and self-strengthening mechanisms for fostering the DN structure to the cojoined-network structure and subsequently mineralized-composite-network structure to harvest excellent stiffness. The ultrastiff hydrogel is shapeable and can reach a compressive modulus of 80-200 MPa together with a fracture energy of 6-10 MJ/m3, comparable to the mechanical performance of cancellous bone. Moreover, the hydrogel is cytocompatible, osteogenic, and showed almost no volume shrinkage within 28 days in simulated body fluid or culture medium. Such characteristics enabled the utility of a hydrogel in the reduction and stabilization of periarticular fracture treatment on a distal femoral AO/OTA B1 fracture rabbit model and successfully avoided the recollapse of the articular surface.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Coelhos , Hidrogéis/química , Materiais Biocompatíveis/química , Polímeros/química , Osso e Ossos , Osteogênese
10.
J Headache Pain ; 24(1): 45, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098498

RESUMO

BACKGROUND: New daily persistent headache (NDPH) is a rare but debilitating primary headache disorder that poses a significant burden on individuals and society. Despite its clinical importance, the underlying pathophysiological mechanisms of NDPH remain unclear. In this study, we aimed to investigate the brain structural changes and neural activity patterns in patients with NDPH using multimodal brain imaging analysis of structural magnetic resonance imaging (sMRI) combined with magnetoencephalography (MEG). METHODS: Twenty-eight patients with NDPH and 37 healthy controls (HCs) were recruited for this study, and their structural and resting-state data were collected by 3.0 Tesla MRI and MEG. We analyzed the brain morphology using voxel-based morphometry and source-based morphometry. In each brain region, MEG sensor signals from 1 to 200 Hz were analyzed using an adapted version of Welch's method. MEG source localization was conducted using the dynamic statistical parametric mapping, and the difference of source distribution between patients with NDPH and HCs was examined. RESULTS: Our results revealed significant differences in the regional grey matter volume, cortical thickness, and cortical surface area between the two groups. Specifically, compared with HCs, patients with NDPH showed a significant decrease in cortical thickness of the left rostral cortex in the middle frontal gyrus, decreased cortical surface area of the left fusiform gyrus, decreased grey matter volume of the left superior frontal gyrus and the left middle frontal gyrus, and increased grey matter volume of the left calcarine. Furthermore, the power of the whole brain, bilateral frontal lobes, and right temporal lobe in the NDPH group were higher than that in HCs in the ripple frequency band (80-200 Hz). Functional and structural analysis suggested that there were structural changes and abnormal high frequency cortical activity in both frontal and temporal lobes in patients with NDPH. CONCLUSION: Our findings indicated that patients with NDPH have abnormalities in brain morphology, such as cortical area, cortical thickness, and grey matter volume, accompanied by abnormal cortical neural activity. Brain structural changes in the frontotemporal cortex and abnormalities in cortical ripple activity may be involved in the pathogenesis of NDPH.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Mapeamento Encefálico , Cefaleia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA