Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Health Sci Rep ; 7(4): e1988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572119

RESUMO

Background and Aims: To assess patient comfort, wound healing, and scarring at the 6-month follow-up of split-skin graft donor sites treated with Ba-Hao burn ointment (BHBO) gauze, a compound preparation of traditional Chinese medicine since 1970s, compared with petrolatum gauze. Methods: Thirty patients admitted to the Department of Burns of the First Affiliated Hospital of Anhui Medical University between September 2021 and September 2022 participated in this randomized, prospective, self-control clinical study. After harvesting the split skin, donor sites were divided into two parts along the midline. BHBO gauze was applied to half of the donor wounds, and petrolatum gauze was applied to the other half. The wound healing time, pain scores on the postoperative Days 3, 6, and 9, and Vancouver Scar Scale (VSS) score at the 6-month follow-up were assessed. Results: The wound healing time was significantly shorter in the BHBO group than in the control group (10.07 ± 1.48 days vs. 11.50 ± 1.74 days, p < 0.001). On postoperative Days 3 and 6, the pain scores quantified by visual analog scores were significantly lower in the BHBO group than in the control group (5.33 ± 1.54 and 4.17 ± 1.51, respectively vs. 7.57 ± 1.41 and 5.20 ± 1.47, respectively). The difference in the visual analog scale score on postoperative Day 9 between the groups was not significant (p > 0.05). Microbiological assessment revealed the absence of bacterial contamination in both groups. At the 6-month follow up, the VSS score was significantly lower in the BHBO group (6.67 ± 1.92) than in the control group (9.57 ± 1.55). Conclusion: BHBO resulted in faster donor-site healing, reduced postoperative pain, and improved scar quality at the 6-month follow-up than petrolatum gauze alone.

2.
Adv Healthc Mater ; : e2401619, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011810

RESUMO

Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-ß)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.

3.
J Int Med Res ; 52(6): 3000605241253759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853406

RESUMO

Treatment of lower limb ischemia in patients with diabetes is challenging because of the location of the ulcers and the complexity of their pathogenesis. Carbon dioxide fractional laser (CO2FL) therapy in conjunction with tibial periosteum distraction could become a substitute for conventional methods. We herein describe a patient diagnosed with ischemic diabetic foot with a complex ulcer in the upper third of the tibia. Laser irradiation (Deep FX mode with 30 mJ of energy and 10% density) was applied to the entire region of skin below the knee after surface anesthesia, and this treatment was performed twice a week until the ulcer healed. Computed tomography angiography showed successful establishment of a blood supply to the back of the right foot after treatment. Skin grafting was successfully performed, with only a few wounds remaining on the foot 8 months after treatment. The pain score was significantly decreased at the last follow-up. No complications occurred. This case report provides guidance for the performance of CO2FL, a fast, easy, accurate treatment in patients with diabetes. CO2FL can target lower limb arterial occlusive disease accompanied by refractory ulcers, addressing the underlying vascular occlusion and dysfunction as well as promoting microcirculation and wound healing.


Assuntos
Pé Diabético , Isquemia , Lasers de Gás , Extremidade Inferior , Humanos , Pé Diabético/terapia , Pé Diabético/cirurgia , Lasers de Gás/uso terapêutico , Isquemia/etiologia , Isquemia/terapia , Masculino , Extremidade Inferior/irrigação sanguínea , Idoso , Pessoa de Meia-Idade , Cicatrização , Resultado do Tratamento
4.
Biotechnol J ; 19(4): e2400078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651251

RESUMO

Due to their high-quality characteristics, Chinese hamster ovary (CHO) cells have become the most widely used and reliable host cells for the production of recombinant therapeutic proteins in the biomedical field. Previous studies have shown that the m6A reader YTHDF3, which contains the YTH domain, can affect a variety of biological processes by regulating the translation and stability of target mRNAs. This study investigates the effect of YTHDF3 on transgenic CHO cells. The results indicate that stable overexpression of YTHDF3 significantly enhances recombinant protein expression without affecting host cell growth. Transcriptome sequencing indicated that several genes, including translation initiation factor, translation extension factor, and ribosome assembly factor, were upregulated in CHO cells overexpressing YTHDF3. In addition, cycloheximide experiments confirmed that YTHDF3 enhanced transgene expression by promoting translation in CHO cells. In conclusion, the findings in this study provide a novel approach for mammalian cell engineering to increase protein productivity by regulating m6A.


Assuntos
Cricetulus , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas Recombinantes , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cricetinae
5.
Huan Jing Ke Xue ; 45(2): 873-884, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471926

RESUMO

Chitosan-modified biochar (CBC) was prepared as a low-cost and highly efficient adsorbent for Cd2+ in aqueous solutions. Batch adsorption experiments were conducted to evaluate the adsorption performance. Characterization experiments with SEM-EDS, FTIR, and XPS were used to analyze the surface microstructure and chemical composition of the adsorbent. The results showed that the adsorption performance of CBC was remarkably improved by the introduction of surface functional groups (-OH, -C=O, and -NH2). The pseudo-second-order kinetic model and Langmuir model were better for describing the kinetics and isotherms for Cd2+ adsorption onto CBC, indicating that the adsorption rate was determined by the active sites and controlled by monolayer chemisorption. The adsorption process was endothermic spontaneous, and the key mechanisms involved complexation, precipitation, cation exchange, and cation-π bonds. After five instances of adsorption-desorption cycles, the adsorption capacity of CBC for Cd2+ still remained above 80% of the initial adsorption capacity, indicating that CBC had a favorable recyclability. The current work embodies the concept of green chemistry, and the prepared chitosan-modified biochar was a promising adsorbent for the removal of Cd2+ in wastewater and soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA