RESUMO
Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Quinases , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Resistencia a Medicamentos AntineoplásicosRESUMO
Several international centers have used and reported on pediatric-inspired regimens to treat adolescent and adult patients with Philadelphia chromosome-negative acute lymphoblastic leukemia (Ph- ALL). However, there is a lack of prospective data from the Chinese population. We performed a prospective study with a pediatric-inspired regimen (IH-2014 regimen) to treat adolescent and adult Ph- ALL patients in our center. From 2014 to 2021, a total of 415 patients aged between 14 and 65 years (median age, 27 years) were included in this study. After a median follow-up of 40.8 months, the 5-year overall survival, disease-free survival, and event-free survival rates were 53.8%, 51.1% and 45.0%, respectively. The regimen was generally well tolerated and safe, and the overall chemotherapy-related mortality was 3.6%. Age ≥40 years and persistent detectable minimal residual disease (MRD) after induction were independent prognostic factors. Traditional risk factors for adult patients combined with post-induction MRD had predictive significance for survival and relapse, which is helpful in the selection of subsequent treatment. Patients with high-risk factors who can achieve a deep MRD response after induction do not derive benefit from allogeneic hematopoietic stem cell transplantation.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasia Residual , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , China/epidemiologia , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Idoso , Prognóstico , Resultado do Tratamento , Transplante de Células-Tronco Hematopoéticas , SeguimentosRESUMO
BACKGROUND AIMS: Decades after the identification of natural killer (NK) cells as potential effector cells against malignantly transformed cells, an increasing amount of research suggests that NK cells are a prospective choice of immunocytes for cancer immunotherapy in addition to T lymphocytes for cancer immunotherapy. Recent studies have led to a breakthrough in the combination of hematopoietic stem-cell transplantation with allogeneic NK cells infusion for the treatment of malignant tumors. However, the short lifespan of NK cells in patients is the major impediment, limiting their efficacy. Therefore, prolonging the survival of NK cells will promote the application of NK-cell immunotherapy. As we have known, NK cells use a "missing-self" mechanism to lyse target cells and exert their functions through a wide array of activating, co-stimulatory and inhibitory receptors. Our previous study has suggested that CD244 (2B4), one of the co-stimulatory receptors, can improve the function of chimeric antigen receptor NK cells. However, the underlying mechanism of how 2B4 engages in the function of NK cells requires further investigation. Overall, we established a feeder cell with the expression of CD48, the ligand of 2B4, to investigate the function of 2B4-CD48 axis in NK cells, and meanwhile, to explore whether the newly generated feeder cell can improve the function of ex vivo-expanded NK cells. METHODS: First, K562 cells overexpressing 4-1BBL and membrane-bound IL-21 (mbIL-21) were constructed (K562-41BBL-mbIL-21) and were sorted to generate the single clone. These widely used feeder cells (K562-41BBL-mbIL-21) were named as Basic Feeder hereinafter. Based on the Basic feeder, CD48 was overexpressed and named as CD48 Feeder. Then, the genetically modified feeder cells were used to expand primary NK cells from peripheral blood or umbilical cord blood. In vitro experiments were performed to compare proliferation ability, cytotoxicity, survival and activation/inhibition phenotypes of NK cells stimulated via different feeder cells. K562 cells were injected into nude mice subcutaneously with tail vein injection of NK cells from different feeder system for the detection of NK in vivo persistence and function. RESULTS: Compared with Basic Feeders, CD48 Feeders can promote the proliferation of primary NK cells from peripheral blood and umbilical cord blood and reduce NK cell apoptosis by activating the p-ERK/BCL2 pathway both in vitro and in vivo without affecting overall phenotypes. Furthermore, NK cells expanded via CD48 Feeders showed stronger anti-tumor capability and infiltration ability into the tumor microenvironment. CONCLUSIONS: In this preclinical study, the engagement of the 2B4-CD48 axis can inhibit the apoptosis of NK cells through the p-ERK/BCL2 signal pathway, leading to an improvement in therapeutic efficiency.
Assuntos
Neoplasias , Receptores Imunológicos , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Apoptose , Antígeno CD48/metabolismo , Células Matadoras Naturais , Ativação Linfocitária , Camundongos Nus , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Microambiente TumoralRESUMO
The prognostic factors to stratify acute myeloid leukaemia (AML) with double-mutated CCAAT/enhancer-binding protein alpha (CEBPAdm) into different risk groups remains to be determined. In this retrospective study, we evaluated 171 consecutive patients with newly diagnosed AML with CEBPAdm by a Cox proportional hazards regression model. In univariate analyses, colony stimulating factor 3 receptor (CSF3R) and Wilms tumour 1 (WT1) mutations were associated with poor relapse-free survival (RFS). The induction regimens including homoharringtonine (omacetaxine mepesuccinate) or intermediate-dose cytarabine was associated with favourable RFS and overall survival (OS). The induction regimen including both homoharringtonine and intermediate-dose cytarabine was associated with the most favourable RFS (3-year RFS 84.7%) and OS (3-year OS 92.8%) compared to the conventional cytarabine and daunorubicin regimen (3-year RFS 27.7%, hazard ratio [HR] 0.126, 95% confidence interval [CI] 0.051-0.313, Wald p < 0.001; and 3-year OS 56.4%, HR 0.179, 95% CI 0.055-0.586, Wald p = 0.005). In multivariate analyses, the induction regimen including intermediate-dose cytarabine (HR 0.364, 95% CI 0.205-0.646, Wald p < 0.001) and CSF3R mutations (HR 2.667, 95% CI 1.276-5.572, Wald p = 0.009) were independently associated with RFS. Taken together, we found that induction regimen and CSF3R mutations were independent prognostic factors for AML with CEBPAdm.
Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Leucemia Mieloide Aguda , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Citarabina/uso terapêutico , Mepesuccinato de Omacetaxina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Recidiva Local de Neoplasia , Prognóstico , Receptores de Fator Estimulador de Colônias , Estudos RetrospectivosRESUMO
OBJECTIVE: To explore the value of flow cytometric (FCM) analysis of cerebrospinal fluid (CSF) in the diagnosis of central nervous system involvement in adult patients with acute lymphoblastic leukemia (ALL) during follow-up. METHODS: A total of 2871 CSF samples from 357 adult patients with newly diagnosed ALL between the year of 2009 and 2015 were analyzed retrospectively. These patients were divided into 3 groups according to CSF results, FCM+/conventional cytology (CC)+ group, FCM+/CC- group, and FCM-/CC- group, respectively. The overall survival (OS) of the three groups was analyzed. RESULTS: Fifteen (4.2%) and 26 (7.3%) patients' CSF samples were FCM+/CC+ and FCM+/CC-, respectively. The remaining 316 (88.5%) patients' samples were FCM-/CC-. The 2-year OS for the FCM+/CC+, FCM+/CC-, and FCM-/CC- groups was 40.0%, 20.6%, and 64.2%, respectively (P < .001). There was no statistically significant difference in OS between FCM+/CC+ and FCM+/CC- patients (P = .195). In multivariate analysis, a high WBC count and LDH level were independent risk factors for central nervous system involvement in adult patients with ALL. CONCLUSIONS: FCM demonstrated a superior sensitivity over conventional cytology in the diagnosis of central nervous system involvement in adult patients with ALL. FCM+/CC- patients showed a similar survival with FCM+/CC+ patients, suggesting that an isolated FCM-positive status holds clinical significance.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquidiano , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Adolescente , Adulto , Idoso , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/efeitos da radiação , Citarabina/uso terapêutico , Dexametasona/uso terapêutico , Feminino , Citometria de Fluxo , Humanos , Masculino , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudos Retrospectivos , Análise de Sobrevida , Transplante Homólogo , Irradiação Corporal TotalRESUMO
BACKGROUND: As the important suppressor of P53, iASPP is found to be overexpressed in leukemia, and functions as oncogene that inhibited apoptosis of leukemia cells. Sertad1 is identified as one of the proteins that can bind with iASPP in our previous study by two-hybrid screen. METHODS: Co-immunoprecipitation and immunofluorescence were perfomed to identified the interaction between iASPP and Sertad1 protein. Westernblot and Real-time quantitative PCR were used to determine the expression and activation of proteins. Cell proliferation assays, cell cycle and cell apoptosis were examined by flow cytometric analysis. RESULTS: iASPP combined with Sertad1 in leukemic cell lines and the interaction occurred in the cytoplasm near nuclear membrane. iASPP could interact with Sertad1 through its Cyclin-A, PHD-bromo, C terminal domain, except for S domain. Overexpression of iASPP in leukemic cells resulted in the increased cell proliferation and resistance to apoptosis induced by chemotherapy drugs. While overexpression of iASPP and Sertad1 at the same time could slow down the cell proliferation, lead the cells more vulnerable to the chemotherapy drugs, the resistance to chemotherapeutic drug in iASPPhi leukemic cells was accompanied by Puma protein expression. Excess Sertad1 protein could tether iASPP protein in the cytoplasm, further reduced the binding between iASPP and P53 in the nucleus. CONCLUSIONS: Sertad1 could antagonize iASPP function by hindering its entrance into nuclei to interact with P53 in leukemic cells when iASPP was in the stage of overproduction.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Nucleares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Transativadores/química , Fatores de TranscriçãoRESUMO
BACKGROUND: The incidence of acute erythroid leukemia subtype (AEL) is rare, accounting for 5% of cases of acute myeloid leukemia (AML), and the outcome is dismal. However, in 2016 revision to the WHO classification, the subcategory of AEL has been removed. Myeloblasts are redefined as the percentage of total marrow cells, not non-erythroid cells. Therefore, the previously diagnosed AEL cases are currently diagnosed as AML or myelodyspalstic syndrome (MDS) according to new criteria. METHODS: We respectively reviewed cases of 97 de novo previously diagnosed AEL and all the patients were diagnosed as AML or MDS according to the new classification scheme, and then the clinical characteristics of these two subtypes were compared. Statistical analyses were performed by SPSS software version 18.0. RESULTS: The median age was 37 years-old, the two-thirds of previous AEL cases were diagnosed as MDS, and there was no obvious difference between two subtypes except for male/female ratio and age. Cytogenetic, rather than MDS/AML subtypes, can better represent the prognostic factor of previously diagnosed AEL patients. When the cytogenetic risk of patients belonged to MRC intermediate category and age were below 40 years-old in previous AEL cases, the patients who received induction chemotherapy without transplantation had a similar survival compared with the patients who underwent transplantation (3-year OS: 67.2% vs 68.5%). CONCLUSIONS: Cytogenetic, rather than MDS/AML subtypes, can better represent the prognostic factor of previously diagnosed AEL patients. Transplantation was a better choice for those whose cytogenetic category was unfavorable.
Assuntos
Leucemia Eritroblástica Aguda/diagnóstico , Adolescente , Adulto , Idoso , Biomarcadores , Medula Óssea/patologia , Criança , Terapia Combinada , Análise Citogenética , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Humanos , Leucemia Eritroblástica Aguda/mortalidade , Leucemia Eritroblástica Aguda/terapia , Leucemia Mieloide Aguda/diagnóstico , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Guias de Prática Clínica como Assunto , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Organização Mundial da Saúde , Adulto JovemAssuntos
Citarabina , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina/uso terapêutico , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Indução de Remissão , Resultado do TratamentoRESUMO
Leukemias are a group of heterogeneous hematological malignancies driven by diverse genetic variations, and the advent of genomic sequencing technologies facilitates the investigation of genetic abnormalities in leukemia. However, these sequencing-based studies mainly focus on nuclear DNAs. Increasing evidence indicates that mitochondrial dysfunction is an important mechanism of leukemia pathogenesis, which is closely related to the mitochondrial genome variations. Here, we provide an overview of current research progress concerning mitochondrial genetic variations in leukemia, encompassing gene mutations and copy number variations. We also summarize currently accessible mitochondrial DNA (mtDNA) sequencing methods. Notably, somatic mtDNA mutations may serve as natural genetic barcodes for lineage tracing and longitudinal assessment of clonal dynamics. Collectively, these findings enhance our understanding of leukemia pathogenesis and foster the identification of novel therapeutic targets and interventions.
RESUMO
BACKGROUND: Immunotherapies, including chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs), encounter several challenges in the management of acute myeloid leukemia (AML), including limited persistence of these treatments, antigen loss and resistance of leukemia stem cells (LSCs) to therapy. METHODS: Here, we proposed a novel dual-targeting approach utilizing engineered anti-IL10R CAR-T cells to secrete bispecific antibodies targeting CD33. This innovative strategy, rooted in our previous research which established a connection between IL-10 and the stemness of AML cells, designed to improve targeting efficiency and eradicate both LSCs and AML blasts. RESULTS: We first demonstrated the superior efficacy of this synergistic approach in eliminating AML cell lines and primary cells expressing different levels of the target antigens, even in cases of low CD33 or IL10R expression. Furthermore, the IL10R CAR-T cells that secret anti-CD33 bsAbs (CAR.BsAb-T), exhibited an enhanced activation and induction of cytotoxicity not only in IL10R CAR-T cells but also in bystander T cells, thereby more effectively targeting CD33-positive tumor cells. Our in vivo experiments provided additional evidence that CAR.BsAb-T cells could efficiently redirect T cells, reduce tumor burden, and demonstrate no significant toxicity. Additionally, delivering bsAbs locally to the tumor sites through this strategy helps mitigate the pharmacokinetic challenges typically associated with the rapid clearance of prototypical bsAbs. CONCLUSIONS: Overall, the engineering of a single-vector targeting IL10R CAR, which subsequently secretes CD33-targeted bsAb, addresses the issue of immune escape due to the heterogeneous expression of IL10R and CD33, and represents a promising progress in AML therapy aimed at improving treatment outcomes.
Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Receptores de Interleucina-10/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Camundongos Endogâmicos NOD , Citotoxicidade ImunológicaRESUMO
Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice. We find that, compared with cells not maintaining PKH-staining, a higher proportion of PKH-retaining cells are in G0 phase, and PKH-retaining cells exhibit increased colony formation ability and leukemia initiation potential. In addition, PKH-retaining cells possess high chemo-resistance and are more likely to be localized to the endosteal bone marrow region. Based on the transcriptional signature, HLA class II histocompatibility antigen gamma chain (Cd74) is highly expressed in PKH-retaining leukemia cells. Furthermore, cell surface CD74 was identified to be highly expressed in LSCs of AE9a mice and CD34+ human leukemia cells. Compared to Lin-CD74- leukemia cells, Lin-CD74+ leukemia cells of AE9a mice exhibit higher stemness properties. Collectively, our findings reveal that the identified slow-cycling leukemia cell population represents an LSC population, and CD74+ leukemia cells possess stemness properties, suggesting that CD74 is a candidate LSC surface marker.
Assuntos
Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Camundongos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Leucemia/patologia , Leucemia/metabolismo , Leucemia/genética , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Endogâmicos C57BL , Regulação Leucêmica da Expressão GênicaRESUMO
Acute myeloid leukemia (AML) with t(16;21)(p11;q22)/FUS::ERG is a rare AML subtype associated with poor prognosis. However, its clinical and molecular features remain poorly defined. We determined the clinicopathological, genomic, and transcriptomic characteristics and outcomes of patients with AML harboring FUS::ERG at our center. Thirty-six AML patients harboring FUS::ERG were identified, with an incidence rate of 0.3%. These patients were characterized by high lactate dehydrogenase levels (median: 838.5 U/L), elevated bone marrow blast counts (median: 71.5%), and a CD56-positive immunophenotype (94.3%). Notably, we found that RTK-RAS GTPase (RAS) pathway genes, including NRAS (33%) and PTPN11 (24%), were frequently mutated in this subtype. Transcriptome analysis revealed enrichment of the phosphatidylinositol-3-kinase-Akt (PI3K-Akt), mitogen-activated protein kinase (MAPK), and RAS signaling pathways and upregulation of BCL2, the target of venetoclax, in FUS::ERG AML compared to RUNX1::RUNX1T1 AML, a more common AML subtype with good prognosis. The median event-free survival in patients with FUS::ERG AML was 11.9 (95% confidence interval [CI]: 9.0-not available [NA]) months and the median overall survival was 18.2 (95% CI: 12.4-NA) months. Allogeneic hematopoietic stem cell transplantation failed to improve outcomes. Overall, the high incidence of RTK-RAS pathway mutations and high expression of BCL2 may indicate promising therapeutic targets in this high-risk AML subset.
RESUMO
Besides chemotherapy and hematopoietic stem cell transplantation (HSCT), autologous T cells can also serve as a new treatment approach for AML patients. However, the features of tumor-reactive T cells and their distinctive markers still lack full description. To evaluate the characteristics of tumor-reactive T cells, we collected bone marrow (BM) T cells from newly diagnosed AML patients with RUNX1::RUNX1T1 as examples for paired single-cell RNA sequencing and single-cell V(D)J sequencing. Based on the STARTRAC-like algorithm, we defined bystander T cells and tumor-reactive T cells. Compared with bystander T cells, tumor-reactive T cells presented as senescent-like cytotoxic terminally differentiated T cells (Temra) with upregulated NK-related markers. Additionally, we found ADGRG1 could serve as the specific marker of CD8+ T tumor-reactive T cell and validated it through the Runx1Runx1t1/+; Mx1-Cre mouse model. In chimeric antigen receptor (CAR)-T and target cell system, ADGRG1 was selectively upregulated upon antigen-TCR encounter. Moreover, ADGRG1+CD8+ T cells released a higher level of IFN-γ and showed higher cell-killing ability when exposed to matched AML blasts. Together, our findings depict the single-cell profile of tumor-reactive T cells in AML BM and propose that ADGRG1 can act as an indicator of T cell tumor reactivity in AML, which may be further harnessed for adoptive cell therapy and tumor-reactive TCR enrichment.
RESUMO
Metabolism plays a key role in the maintenance of normal hematopoietic stem cells (HSCs) and in the development of leukemia. A better understanding of the metabolic characteristics and dependencies of pre-leukemic cells could help identify potential therapeutic targets to prevent leukemic transformation. As AML1-ETO, one of the most frequent fusion proteins in acute myeloid leukemia that is encoded by a RUNX1::RUNX1T1 fusion gene, is capable of generating pre-leukemic clones, here we used a conditional Runx1::Runx1t1 knock-in mouse model to evaluate pre-leukemic cell metabolism. AML1-ETO expression resulted in impaired hematopoietic reconstitution and increased self-renewal ability. Oxidative phosphorylation and glycolysis decreased significantly in these pre-leukemic cells accompanied by increased HSC quiescence and reduced cell cycling. Furthermore, HSCs expressing AML1-ETO exhibited an increased requirement for fatty acids through metabolic flux. Dietary lipid deprivation or loss of the fatty acid transporter FATP3 by targeted deletion using CRISPR/Cas9 partially restored differentiation. These findings reveal the unique metabolic profile of pre-leukemic cells and propose FATP3 as a potential target for disrupting leukemogenesis.
RESUMO
Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Humanos , Camundongos , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos Transgênicos , Fator de Células-Tronco/metabolismoRESUMO
Chimeric antigen receptor T (CAR-T) cell therapy initiates new methods and turns the scale of clinical treatment on relapsed/refractory acute T lymphoblastic leukemia (T-ALL). In this study, we generated the second-generation CD7-targeting CAR-T cells with a new antigen-binding single-chain variable fragment sequence and made it universal via CRISPR-based knockout of TRAC and CD7 genes (termed UCAR-T). The CD7 UCAR-T cells can efficiently proliferate and lyse T-ALL tumor cell in vitro, along with prominent proinflammatory cytokines secretion. A Jurkat-based xenograft mouse model further verified the superior cytotoxicity of the UCAR-T cells in vivo. During the UCAR-T construction, we observed a CD4/CD8 ratio shift among CD7-/- T/CAR-T cells, which motivated us to further analyze the effects of CD7 antigen on T/CAR-T cells. We sorted out CD7+/- T or anti-CD19 CAR-T cells after partially CD7 knockout and performed functional, phenotypic detection, as well as translational analysis. CD7-/- CAR-T cells tended to be CD8 negative and showed slightly better cytotoxicity at long-term assay. RNA-seq further confirmed an elevation of activated CD4 memory cell subpopulation. However, limited distinction on crucial regulatory genes and pathways was revealed, suggesting the safety and feasibility of UCAR-T application as well as the potential translational rather than transcriptional regulation of CD7 antigen.
Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Antígenos CD7/genética , Imunoterapia Adotiva/métodos , Linfócitos T CD4-Positivos , Expressão Gênica , Antígenos CD19RESUMO
Fms-like tyrosine kinase 3 (Flt3) tyrosine kinase inhibitors (Flt3-TKI) have improved outcomes for patients with Flt3-mutated acute myeloid leukemia (AML) but are limited by resistance and relapse, indicating persistence of leukemia stem cells (LSC). Here utilizing a Flt3-internal tandem duplication (Flt3-ITD) and Tet2-deleted AML genetic mouse model we determined that FLT3-ITD AML LSC were enriched within the primitive ST-HSC population. FLT3-ITD LSC showed increased expression of the CXCL12 receptor CXCR4. CXCL12-abundant reticular (CAR) cells were increased in Flt3-ITD AML marrow. CXCL12 deletion from the microenvironment enhanced targeting of AML cells by Flt3-TKI plus chemotherapy treatment, including enhanced LSC targeting. Both treatment and CXCL12 deletion partially reduced p38 mitogen-activated protein kinase (p38) signaling in AML cells and further reduction was seen after treatment in CXCL12 deleted mice. p38 inhibition reduced CXCL12-dependent and -independent maintenance of both murine and human Flt3-ITD AML LSC by MSC and enhanced their sensitivity to treatment. p38 inhibition in combination with chemotherapy plus TKI treatment leads to greater depletion of Flt3-ITD AML LSC compared with CXCL12 deletion. Our studies support roles for CXCL12 and p38 signaling in microenvironmental protection of AML LSC and provide a rationale for inhibiting p38 signaling to enhance Flt3-ITD AML targeting.
Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Animais , Humanos , Camundongos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases , Mutação , Transdução de Sinais , Células-Tronco/metabolismo , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Chromosome translocations in the 5q31-33 region are associated with a range of hematologic malignancies, some of which involve the platelet-derived growth factor receptor beta (PDGFRB) gene. We report a case of acute myeloid leukemia (AML) with a mutation in the NPM1 gene (NPM1-mut AML) and a subclonal gene rearrangement involving the PDGFRB gene. We identified a novel fusion gene, STRN3::PDGFRB, resulting from t(5;14) (q32;q12) chromosomal rearrangement. Sequential FISH confirmed that ~15% of leukemic cells carried the PDGFRB gene rearrangement, which suggests that STRN3::PDGFRB is a previously unreported fusion gene in a subclone. Reverse transcription PCR (RT-PCR) and Sanger sequencing confirmed that the fusion gene consisted of STRN3 exon 7 fused to PDGFRB exon 11, resulting in a chimeric protein containing the coiled-coil domain of striatin-3 and the transmembrane and intracellular tyrosine kinase domains of the PDGFRB. The new protein exhibited distinct cytoplasmic localization and had leukemogenic effects, as demonstrated by its ability to transform Ba/F3 cells to growth factor independence and cause a fatal myelodysplastic/myeloproliferative neoplasm (MDS/MPN)-like disease in mice, which then transformant to T-cell lymphoblastic lymphoma in secondary recipients. Ba/F3 cells expressing STRN3::PDGFRB or ETV6::PDGFRB were sensitive to tyrosine kinase inhibitors (TKIs) and selinexor, but in vitro experiments showed that the combination of imatinib and selinexor had a marked synergistic effect, although only the imatinib alone group could prolong the survival of T-cell blast transformation recipient mice. Our findings demonstrate the leukemogenic effects of the novel fusion gene and provide insights into the clone evolution of AML, which can be influenced by therapy selection. Furthermore, our results provide insight into the potential therapeutic options for patients with this type of mutation, as well as the need for careful consideration of treatment selection to prevent undesirable side effects.
Assuntos
Hidrazinas , Leucemia Mieloide Aguda , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Triazóis , Humanos , Animais , Camundongos , Mesilato de Imatinib/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas de Fusão Oncogênica/genética , Translocação Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Nucleares/genética , Autoantígenos , Proteínas de Ligação a Calmodulina/genéticaRESUMO
BACKGROUND: T cell-redirecting bispecific antibodies establish a connection between endogenous T cells and tumor cells, activating T cells function to eliminate tumor cells without ex vivo genetic alteration or manipulation. Here, we developed a novel dual-specific antibody (DuAb) and an enhanced DuAb (EDuAb) with different stimulation signal to activate T cells, and evaluated their impact on the treatment of acute lymphoblastic leukemia (ALL). METHODS: The expression plasmids of the DuAb and EDuAb containing CD80 molecule were constructed by cloning heavy chain and light chain variable fragments from anti-human CD19 (HI19a) and CD3 (HIT3a) monoclonal antibody hybridomas, respectively. The activation and the anti-tumor efficacy of human T cells mediated by DuAb and EDuAb were evaluated in vitro. B-cell ALL xenograft NSG mouse model was established to investigate the therapeutic effect in vivo. RESULTS: EDuAb promoted the optimal expansion of primary human T cells with low expression of inhibitory markers in vitro than DuAb did. Both DuAb and EDuAb showed a similar capability in inducing healthy donor T cells to specifically eliminate B-ALL cell lines and primary blasts from patients. The similar ability was also observed in the patient-derived T cells. In vivo study showed that both DuAb and EDuAb significantly alleviated tumor burden and extended survival of B-ALL xenograft NSG mice. The median survival of PBS, DuAb and EDuAb treatment groups were 27, 38 and 45 days, respectively. The phenotype of T cells and cytokine release in peripheral blood (PB) of B-ALL xenograft NSG mice on day 24 were analyzed as well. The results showed that the proportion of CD8+ T cells and cytokine levels, including IL-2, IFN-γ and TNF-α, were higher in the EDuAb group than that of DuAb. Moreover, both DuAb and EDuAb significantly decreased the residual leukemia cells in PB of B-ALL xenograft NSG mice. CONCLUSIONS: Both DuAb and EDuAb showed great potential as novel treatments for B-ALL in clinical applications. However, compared to DuAb, EDuAb showed a significant advantage in promoting the proliferation and survival of T cells. Furthermore, EDuAb showed a better promising effect on eliminating tumor cells and extending survival in vivo, which provides new insights for the development of new multi-specific antibodies.
RESUMO
Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.