Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 178(2): 907-922, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158117

RESUMO

MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation.


Assuntos
Arabidopsis/enzimologia , Glycine max/enzimologia , MAP Quinase Quinase Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Morte Celular , Resistência à Doença , MAP Quinase Quinase Quinase 1/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peronospora/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/imunologia , Glycine max/fisiologia , Nicotiana/genética , Nicotiana/imunologia
2.
J Biol Chem ; 292(48): 19743-19751, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972151

RESUMO

It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione-induced inhibition was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H2O2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys128), and substitution of Cys128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , S-Nitrosoglutationa/farmacologia , Solanum lycopersicum/enzimologia , Aldeído Oxirredutases/genética , Morte Celular , Cromatografia Líquida , Cisteína/metabolismo , Inativação Gênica , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Espectrometria de Massas em Tandem
3.
Mol Plant Microbe Interact ; 27(8): 824-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24762222

RESUMO

It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max/enzimologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Morte Celular , Expressão Gênica , Inativação Gênica , Genes Reporter , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peronospora/fisiologia , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Potyvirus/fisiologia , Mapeamento de Interação de Proteínas , Ácido Salicílico/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/fisiologia , Glycine max/genética , Glycine max/imunologia , Glycine max/fisiologia , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/fisiologia
4.
BMC Med Genomics ; 16(1): 218, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710236

RESUMO

OBJECTIVE: This study aimed to uncover abnormally expressed genes regulated by competitive endogenous RNA (ceRNA) and DNA methylation nasopharyngeal carcinoma and to validate the role of lncRNAs in the ceRNA network on nasopharyngeal carcinoma progression. METHODS: Based on the GSE64634 (mRNA), GSE32960 (miRNA), GSE95166 (lncRNA), and GSE126683 (lncRNA) datasets, we screened differentially expressed mRNAs, miRNAs and lncRNAs in nasopharyngeal carcinoma. A ceRNA network was subsequently constructed. Differentially methylated genes were screened using the GSE62336 dataset. The abnormally expressed genes regulated by both the ceRNA network and DNA methylation were identified. In the ceRNA network, the expression of RP11-545G3.1 lncRNA was validated in nasopharyngeal carcinoma tissues and cells by RT-qPCR. After a knockdown of RP11-545G3.1, the viability, migration, and invasion of CNE-2 and NP69 cells was assessed by CCK-8, wound healing and Transwell assays. RESULTS: This study identified abnormally expressed mRNAs, miRNAs and lncRNAs in nasopharyngeal carcinoma tissues. A ceRNA network was constructed, which contained three lncRNAs, 15 miRNAs and 129 mRNAs. Among the nodes in the PPI network based on the mRNAs in the ceRNA network, HMGA1 was assessed in relation to the overall and disease-free survival of nasopharyngeal carcinoma. We screened two up-regulated genes regulated by the ceRNA network and hypomethylation and 26 down-regulated genes regulated by the ceRNA network and hypermethylation. RP11-545G3.1 was highly expressed in the nasopharyngeal carcinoma tissues and cells. Moreover, the knockdown of RP11-545G3.1 reduced the viability, migration, and invasion of CNE-2 and NP69 cells. CONCLUSION: Our findings uncovered the epigenetic regulation in nasopharyngeal carcinoma and identified the implications of RP11-545G3.1 on the progression of nasopharyngeal carcinoma.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Metilação de DNA , Epigênese Genética , Carcinoma Nasofaríngeo/genética , RNA Mensageiro/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Expressão Gênica
5.
Biomed Pharmacother ; 165: 115040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364479

RESUMO

Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Imunoterapia , Inibidores de Checkpoint Imunológico , Neoplasias Colorretais/terapia
6.
Front Immunol ; 14: 1323115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173726

RESUMO

Background: Cancer-associated fibroblasts (CAFs) represent the predominant stromal component within the tumour microenvironment (TME), exhibiting considerable heterogeneity and plasticity that significantly impact immune response and metabolic reprogramming within the TME, thereby influencing tumour progression. Consequently, investigating CAFs is of utmost importance. The objective of this study is to employ bibliometric analysis in order to evaluate the current state of research on CAFs and predict future areas of research and emerging trends. Methods: Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, encompassing the time period from January 1, 2001, to December 31, 2022. Apply VOSviewer, CiteSpace, R software and Microsoft Excel for bibliometric analysis and visualisation. Results: This study involved a comprehensive analysis of 5,925 publications authored by 33,628 individuals affiliated with 4,978 institutions across 79 countries/regions. These publications were published in 908 journals, covering 14,495 keywords and 203,947 references. Notably, there was a significant increase in articles published between 2019 and 2022. China had the highest count of articles, while the United States emerged as the most frequently cited country. The primary research institutions in this field were Shanghai Jiao Tong University, Harvard University, and the University of Texas MD Anderson Cancer Center. Sotgia, Federica and Lisanti, Michael P from the University of Manchester, and Martinet, Wim from the University of Antwerp were the most prolific and highly cited authors. The journal Cancers had the highest number of publications, while Cancer Research was the most frequently cited journal. Molecular, biology, immunology, medicine and genetics were the main research disciplines in the field of CAFs. Key directions in CAFs research encompassed the study of transforming growth factor-ß, Fibroblast Activation Protein, breast cancer, as well as growth and metastasis. The findings from the analysis of keyword co-occurrence and literature co-citation have revealed several emerging hotspots and trends within the field of CAFs. These include STAT3, multidrug resistance, pancreatic ductal adenocarcinoma, pan-cancer analysis, preclinical evaluation, ionizing radiation, and gold nanoparticles. Conclusion: Targeting CAFs is anticipated to be a novel and effective strategy for cancer treatment. This study provides a comprehensive overview of the existing research on CAFs from 2001 to 2022, utilizing bibliometric analysis. The study identified the prominent areas of investigation and anticipated future research directions, with the aim of providing valuable insights and recommendations for future studies in the field of CAFs.


Assuntos
Fibroblastos Associados a Câncer , Nanopartículas Metálicas , Neoplasias Pancreáticas , Humanos , China , Ouro , Bibliometria , Microambiente Tumoral
7.
Plant Physiol ; 157(3): 1363-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21878550

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.


Assuntos
Proteínas de Arabidopsis/química , Glycine max/crescimento & desenvolvimento , Glycine max/imunologia , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Núcleo Celular/enzimologia , Resistência à Doença/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , Medições Luminescentes , Análise de Sequência com Séries de Oligonucleotídeos , Peronospora/fisiologia , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Ligação Proteica , Transporte Proteico , Ácido Salicílico/metabolismo , Glycine max/enzimologia , Glycine max/genética , Frações Subcelulares/enzimologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA