Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Sci Technol ; 58(2): 1287-1298, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113251

RESUMO

Despite the known direct toxicity of various antibiotics to aquatic organisms, the potential chronic impact through intergenerational transmission on reproduction remains elusive. Here, we exposed zebrafish to a mixture of 15 commonly consumed antibiotics at environmentally relevant concentrations (1 and 100 µg L-1) with a cross-mating design. A high accumulation of antibiotics was detected in the ovary (up to 904.58 ng g-1) and testis (up to 1704.49 ng g-1) of F0 fish. The transmission of antibiotics from the F0 generation to the subsequent generation (F1 offspring) was confirmed with a transmission rate (ki) ranging from 0.11 to 2.32. The maternal transfer of antibiotics was significantly higher, relative to paternal transfer, due to a greater role of transmission through ovarian enrichment and oviposition compared to testis enrichment. There were similar impairments in reproductive and developmental indexes on F1 eggs found following both female and male parental exposure. Almost all antibiotics were eliminated in F2 eggs in comparison to F1 eggs. However, there were still reproductive and developmental toxic responses observed in F2 fish, suggesting that antibiotic concentration levels were not the only criterion for evaluating the toxic effects for each generation. These findings unveil the intergenerational transmission mechanism of antibiotics in fish models and underscore their potential and lasting impact in aquatic environments.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Feminino , Reprodução , Testículo , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976350

RESUMO

Perfluorooctane sulfonamide (PFOSA) is an immediate perfluorooctanesulfonate (PFOS) precursor (PreFOS). Previous studies have shown PFOSA to induce stronger toxic responses compared to other perfluorinated compounds (PFCs). However, the specific nature of PFOSA-induced toxicity, whether autonomous or mediated by its metabolite PFOS, has not been fully elucidated. This study systematically investigates the immunomodulatory effects of PFOSA and PFOS in zebrafish (Danio rerio). Exposure to PFOSA compromised the zebrafish's ability to defend against pathogenic infections, as evidenced by increased bacterial adhesion to their skin and reduced levels of the biocidal protein lysozyme (LYSO). Moreover, PFOSA exposure was associated with disruptions in inflammatory markers and immune indicators, along with a decrease in immune cell counts. The findings from this study suggest that the immunotoxicity effects of PFOSA are primarily due to its own toxicity rather than its metabolite PFOS. This conclusion was supported by dose-dependent responses, the severity of observed effects, and multivariate analysis. In addition, our experiments using NF-κB-morpholino knock-down techniques further confirmed the role of the Nuclear factor-κappa B pathway in mediating PFOSA-induced immunotoxicity. In conclusion, this study reveals that PFOSA impairs the immune system in zebrafish through an autotoxic mechanism, providing valuable insights for assessing the ecological risks of PFOSA.

3.
Chin J Cancer Res ; 36(3): 306-321, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988489

RESUMO

Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.

4.
Environ Sci Technol ; 57(9): 3783-3793, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36797597

RESUMO

Perfluorononanoic acid (PFNA), commonly used as an alternative polyfluorinated compound (PFC) of perfluorooctanoic acid (PFOA), has been widely detected in the aquatic environment. Previous ecotoxicological and epidemiological results suggested that some neurobehavioral effects were associated with PFC exposure; however, the ecological impacts and underlying neurotoxicity mechanisms remain unclear, particularly in aquatic organisms during sensitive, early developmental stages. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of PFNA for 120 h, and the neurological effects of PFNA were comprehensively assessed using transcriptional, biochemical, morphological, and behavioral assays. RNA sequencing and advanced bioinformatics analyses predicted and characterized the key biological processes and pathways affected by PFNA exposure, which included the synaptogenesis signaling pathway, neurotransmitter synapse, and CREB signaling in neurons. Neurotransmitter levels (acetylcholine, glutamate, 5-hydroxytryptamine, γ-aminobutyric acid, dopamine, and noradrenaline) were significantly decreased in zebrafish larvae, and the Tg(gad67:GFP) transgenic line revealed a decreased number of GABAergic neurons in PFNA-treated larvae. Moreover, the swimming distance, rotation frequency, and activity degree were also significantly affected by PFNA, linking molecular-level changes to behavioral consequences.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Larva , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
5.
Environ Sci Technol ; 57(15): 6139-6149, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37017313

RESUMO

Previous studies have reported the immunotoxicity of per- and polyfluoroalkyl substances (PFASs), but it remains a significant challenge to assess over 10,000 distinct PFASs registered in the distributed structure-searchable toxicity (DSSTox) database. We aim to reveal the mechanisms of immunotoxicity of different PFASs and hypothesize that PFAS immunotoxicity is dependent on the carbon chain length. Perfluorobutanesulfonic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) representing different carbon chain lengths (4-9) at environmentally relevant levels strongly reduced the host's antibacterial ability during the zebrafish's early-life stage. Innate and adaptive immunities were both suppressed after PFAS exposures, exhibiting a significant induction of macrophages and neutrophils and expression of immune-related genes and indicators. Interestingly, the PFAS-induced immunotoxic responses were positively correlated to the carbon chain length. Moreover, PFASs activated downstream genes of the toll-like receptor (TLR), uncovering a seminal role of TLR in PFAS immunomodulatory effects. Myeloid differentiation factor 88 (MyD88) morpholino knock-down experiments and MyD88 inhibitors alleviated the immunotoxicity of PFASs. Overall, the comparative results demonstrate differences in the immunotoxic responses of PFASs due to carbon chain length in zebrafish, providing new insights into the prediction and classification of PFASs mode of toxic action based on carbon chain length.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Peixe-Zebra , Carbono , Fator 88 de Diferenciação Mieloide , Fluorocarbonos/toxicidade
6.
Environ Sci Technol ; 56(12): 8428-8437, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35545936

RESUMO

The immunosuppressive effects of antibiotics and the potential associations with the intestinal microbiota of the host have been increasingly recognized in recent years. However, the detailed underlying mechanisms of immune interference of antibiotics in environmental organisms remain unclear, particularly at the early life stage of high sensitivity. To better understand the gut microbiome and immune function interactions, the vertebrate model, zebrafish, was treated with environmentally relevant concentrations of a frequently detected antibiotic, enrofloxacin (ENR), ranging from 0.01 to 100 µg/L. 16S ribosomal RNA sequencing indicated diminished diversity, richness, and evenness of intestinal flora following ENR treatment. Twenty-two taxa of gut bacteria including Rickettsiales, Pseudomonadales, and Flavobacteriales were significantly correlated with immunosuppressive biomarkers, including a significant decrease in the abundance of macrophages and neutrophils. To validate the immunomodulatory effects due to altered intestinal microbial populations, zebrafish reared under sterile and non-sterile husbandry conditions were compared after ENR treatment. A significant inhibitory effect was induced by ENR treatment under non-sterile conditions, while the number of macrophages and neutrophils, as well as biomarkers of immunosuppressive effects, were significantly salved in zebrafish under sterile conditions, confirming for the first time that immunosuppression by ENR was closely mediated through alterations of the intestinal microbiome in fish.


Assuntos
Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Enrofloxacina/farmacologia , Terapia de Imunossupressão , RNA Ribossômico 16S/genética , Peixe-Zebra/genética
7.
Environ Sci Technol ; 56(12): 8438-8448, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652794

RESUMO

Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 µg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 µg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.


Assuntos
Receptores de Hidrocarboneto Arílico , Peixe-Zebra , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero , Fluorocarbonos , Receptores de Hidrocarboneto Arílico/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Environ Sci Technol ; 56(7): 4251-4261, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286074

RESUMO

The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them "pseudo persistent organic contaminants." Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.


Assuntos
Clortetraciclina , Animais , Antibacterianos/metabolismo , Clortetraciclina/metabolismo , Clortetraciclina/farmacologia , Terapia de Imunossupressão , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo
9.
J Environ Manage ; 308: 114397, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121467

RESUMO

Siderite was applied to the binary oxidant system of siderite-catalyzed hydrogen peroxide (H2O2) and enhanced with persulfate (PS). In the absence of PS, methyl orange (MO) almost could not be degraded by the siderite/H2O2 process. However, adding PS significantly improved the capacity of MO to oxidize azo-dye. The influence of individual and interaction of reaction factors have been explored with a simple response surface methodology (RSM) based on central composite design (CCD). The quadratic model with low probabilities (<0.0001) at a confidence level of 95% was satisfactory to predict MO degradation in siderite/H2O2/PS system, whose correlation coefficients of R2 and R2-adj were 0.9569 and 0.9264, respectively. Moreover, the optimum operation conditions of 21.20 mM, 2.75 g/L, 3.86 mM, and 4.69 for H2O2, siderite, PS and initial pH, respectively with the response of C/C0 around 0.047. Radical scavenging experiments and electron spin resonance (ESR) determined that ·OH was crucial for MO degradation, while the contribution of SO4·- was minor. The surface morphology and iron content of siderite before and after the oxidation process showed clear differences. Possible intermediates and a degradation pathway were proposed based on the results of UV-Vis spectral and GC-MS analysis. Moreover, the toxicity to Vibrio fischeri bioluminescent bacterium has increased in the earlier degradation stage due to the generated by-products and weaken with the continuous treatment. This study demonstrated that the siderite/H2O2/PS system was effective over a relatively wide pH range without producing secondary pollutants, making it a promising technology and potential environmentally benign approach to azo-dye wastewater treatment.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Compostos Azo/química , Carbonatos , Compostos Férricos , Peróxido de Hidrogênio/química , Oxirredução , Poluentes Químicos da Água/química
10.
Environ Geochem Health ; 44(9): 2943-2953, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35064382

RESUMO

Gallium oxide (Ga2O3), titanium dioxide (TiO2), cerium dioxide (CeO2), indium oxide (In2O3) and cadmium sulfide (CdS) were commonly used under UV light as photocatalysis system for the pollutants' degradation. In this study, these five catalysts were applied for the photodegradation of perfluorooctanoic acid (PFOA), a well-known perfluoroalkyl substance (PFAS). As a result, the PFOA photodegradation performance was sequenced as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS. To further explain the photocatalysis mechanism, the effects of initial pH, photon energy and band gap were evaluated. The initial pH of 3 ± 0.2 hinders the catalytic reaction of CdS, resulting in low degradation of PFOA, while it has no significant effect on Ga2O3, TiO2, CeO2 and In2O3. In addition, quantum yield was sequenced as TiO2 > CeO2 > Ga2O3 > In2O3, which may not be the main factor determining the degradation effect. Notably, the band gap energy from large to narrow was as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS, which exactly matched their degradation performance.


Assuntos
Fluorocarbonos , Compostos de Cádmio , Caprilatos , Sulfetos , Titânio/química , Água
11.
Environ Sci Technol ; 55(3): 1953-1963, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496180

RESUMO

Bisphenol A (BPA) analogues, used in a range of products due to health concerns regarding BPA, have emerged as ubiquitous environmental contaminants worldwide. This study aims to evaluate the levels of nine bisphenols (BPs) and eight biomarkers (malondialdehyde, MDA; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; estradiol, E2; follicle-stimulating hormone, FSH; luteinizing hormone, LH; complement compound 3, C3; immunoglobulin M, IgM and c-reaction protein, CRP) in human serum (n = 353) to explore their potential relationships. The detection rates (DRs) of eight BPs in serum samples taken from people working in a dense industrial area of Shenzhen (Guangdong Province, China) were over 72% except for bisphenol B (BPB) (DR = 27.5%). The mean concentrations of BPA, bisphenol P (BPP), BPB, bisphenol F (BPF), bisphenol FL (BPFL), 4,4'-dihydroxy-benzophenone (DHBP), bisphenol AF (BPAF), 4,4'-thiodiphenol (TDP) and bisphenol S (BPS) were 42.062, 2.083, 0.765, 0.578, 0.423, 0.402, 0.191, 0.120, and 0.071 ng/mL, respectively. BPA and BPFL were significantly correlated with the level of oxidative stress indices MDA and 8-OHdG; BPAF, BPB, and DHBP were strongly correlated with the level of endocrine disturbance indices E2, FSH, and LH; and BPF, DHBP, and BPAF were apparently related to the level of immune interference indices C3 and IgM. This study also suggests multiple impacts (oxidative stress, endocrine disturbance, and immune interference) mediated by BPs contaminants in vivo. To our knowledge, this is the first study to report the correlations among these nine serum BPs and oxidative stress and endocrine and immune system indices in human serum samples collected from dense industrial areas.


Assuntos
Compostos Benzidrílicos , Estresse Oxidativo , Compostos Benzidrílicos/análise , China , Humanos , Indústrias , Hormônio Luteinizante , Fenóis
12.
Mar Drugs ; 19(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806251

RESUMO

The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein-toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.


Assuntos
Proteínas de Peixes/metabolismo , Takifugu/metabolismo , Tetrodotoxina/metabolismo , Vitelogeninas/metabolismo , Fator de von Willebrand/metabolismo , Animais , Proteínas de Peixes/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Vitelogeninas/genética , Fator de von Willebrand/genética
13.
Environ Sci Technol ; 54(5): 2869-2877, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31888327

RESUMO

Bisphenol S (BPS), an alternative for bisphenol A (BPA) that is present in thermal paper and numerous consumer products, has been linked to estrogenic, cytotoxic, genotoxic, neurotoxic, and immunotoxic responses. However, the mechanisms of BPS toxicity remain poorly understood. Here, following exposure to environmentally relevant concentrations ranging from 0.1 to 100 µg/L BPS, transcriptional changes evaluated by enriched gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) predicted cardiac disease and impairment of immune function in zebrafish at the embryo-to-larvae stage. Consistent with impacts predicted by transcriptional changes, significant sublethal impacts were observed ranging from reduced heart rate [8.7 ± 2.4% reductions at 100 µg/L BPS treatment; P < 0.05] to abnormal cardiac morphology [atrial/ventricle area significantly increased; 36.2 ± 9.6% at 100 µg/L BPS treatment; P < 0.05]. RNA-sequencing analysis results also indicated changes in nitric oxide synthetase (NOS2) and interleukin 12 (IL12) after BPS treatment, which was confirmed at the protein level. Increased expression of other cytokine genes was observed in larvae, suggesting inflammatory responses may be contributing to cardiac impairment by BPS. BPS caused cardiotoxicity, which temporally corresponded with inflammatory responses as predicted from RNA sequencing and confirmed at the protein and cellular levels of biological organization. Additional study is needed to find causal linkages between these responses.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Compostos Benzidrílicos , Cardiotoxicidade , Fenóis , Sulfonas
14.
Appl Microbiol Biotechnol ; 104(5): 1883-1890, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932892

RESUMO

C-Glycosides, a special type of glycoside, are frequently distributed in many kinds of medicinal plants, such as puerarin and mangiferin, showing various and significant bioactivities. C-Glycosides are usually characterized by the C-C bond that forms between the anomeric carbon of sugar moieties and the carbon atom of aglycon, which is usually resistant against acidic hydrolysis and enzymatic treatments. Interestingly, C-glycosides could be cleaved by several intestinal bacteria, but whether the enzymatic cleavage of C-C glycosidic bond is reduction or hydrolysis has been controversial; furthermore, whether existence of a "C-glycosidase" directly catalyzing the cleavage is not clear. Here we review research advances about the discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bond with an emphasis on the identification of enzymes manipulation the deglycosylation. Finally, we give a brief conclusion about the mechanism of C-glycoside deglycosylation and perspectives for future study in this field.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Intestinos/microbiologia , Animais , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Biotransformação , Glicosídeo Hidrolases/genética , Glicosídeos/química , Glicosilação , Humanos , Estrutura Molecular
15.
Chem Biodivers ; 17(7): e2000233, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32386247

RESUMO

Two sulfated fucoidan fractions (Lj3 and Lj5) were extracted from Saccharina japonica and then subjected to acid hydrolysis to obtain Lj3h and Lj5h. Lj3h and Lj5h were characterized using IR, methylation analysis, and mass spectrometry. It was found that Lj3h and Lj5h were homogeneous low molecular weight fucoidans. Specifically, Lj3h was composed of the main chain of 1,3-linked α-L-fucopyranose residues with sulfate at C-2 and/or C-4 and three different monosaccharides (galactose, glucose, mannose) branched at C-2 and/or C-4 of fucose residue. Lj5h contained backbones of alternating galactopyranose residues and fucopyranose residues attached via a 1→3 linkage (galactofucan) and 1→6 linked galactan. The sulfation pattern was mainly located at C2/C4 fucose or galactose residues and more branches occupied at C-4 of fucose residue and C-2, C-3 or/and C-6 of galactose residue. In vitro assay indicated that, among the four fucoidans tested, only Lj5 showed potent α-glucosidase inhibitory activity with IC50 of 153.27±22.89 µg/mL, and the two parent fucoidans, Lj3 and Lj5, showed better antioxidant activity than their derivatives. These findings highlight the structure and bioactivity diversity of Saccharina japonica-derived fucoidans.


Assuntos
Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Phaeophyceae/química , Polissacarídeos/farmacologia , alfa-Glucosidases/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Configuração de Carboidratos , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Picratos/antagonistas & inibidores , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade
16.
Ecotoxicol Environ Saf ; 174: 181-188, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826544

RESUMO

Bisphenol A (BPA) is an environmentally ubiquitous chemical widely used in industry and is known to have adverse effects on organisms. Given the negative effect, BPA-free products have been developed with BPA analogs such as bisphenol F (BPF) and bisphenol S (BPS); however, these analogs are proving to exhibit toxicity similar to that of BPA. In the present study, we aimed to identify and compare the underlying mechanisms of toxicity of BPA, BPF, and BPS at the transcriptional level by conducting global transcriptome sequencing (RNA-Seq) on zebrafish embryos. RNA-seq results showed that the expression levels of 285, 191, and 246 genes were significantly changed in zebrafish larvae after embryos were treated for 120 h with 100 µg/L BPA, BPF, and BPS, respectively. Among the genes exhibiting altered expression, a substantial number were common to two or three exposure groups, suggesting consistent toxicity between the three bisphenols. We further validated the expression levels of 19 differentially expressed genes by qRT-PCR, using sequencing RNA and the RNA samples after treatment by 0.01, 1, and 100 µg/L bisphenols under identical condition, the results were similar to RNA-Seq. Moreover, functional enrichment analysis indicated that metabolism was the main pathway which disrupted in zebrafish larvae by bisphenols treatment. Protein-protein interaction network analysis indicated that six DEGs (ces, cda, dpyd, upp1, upp2, and cmpk2) interact together in the drug metabolism of zebrafish. In summary, our study revealed changes in the transcription of genes upon bisphenols treatment in zebrafish larvae for the first time, indicating that BPF and BPS may cause adverse effects similar to BPA via their involvement in various biological processes, providing a solid foundation for further research on the toxicology of BPA analogs.


Assuntos
Compostos Benzidrílicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Peixe-Zebra/metabolismo , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , RNA/genética , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/genética
17.
Ecotoxicol Environ Saf ; 180: 43-52, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31063942

RESUMO

Bisphenol analogues and alkyl esters of p-hydroxybenzoic (parabens) can be defined as emerging endocrine-disrupting compounds (EDCs) due to their similar characteristics. This study analyzed eight bisphenol analogues, six parabens, and five paraben metabolites in seawater (including aqueous and suspended particle matter (SPM)), as well as organism samples from the Pearl River Estuary, in order to determine their occurrence, distribution, bioaccumulation, and ecological and human health risk in South China's marine environment. The aggregation concentrations of bisphenol analogues, parabens, and paraben metabolites were 106 ng/L, 4.53 ng/L, and 231 ng/L in aqueous samples, 868 ng/g, 173 ng/g, and 9320 ng/g in SPM samples, 41.6 ng/g, 6.46 ng/g, and 460 ng/g in marine organisms, respectively. This study identified significantly higher concentrations of paraben metabolites than their parent parabens in the marine environment, which has not yet been reported in previous studies. These findings call for greater attention on the contamination of paraben metabolites in marine environments. Moreover, the median values of the logarithm of bioaccumulation factors (BAF) for the detected 20 target compounds ranged from 0.11 to 5.07. Bisphenol analogues including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), bisphenol P (BPP), and Fluornen-9-bisphenol (BPFL) (3.3 < lg BAF < 3.7), and three paraben metabolites including 4-hydroxybenzoic acid (4-HB) (3.3 < lg BAF < 3.7), methyl protocatechuate (OH-MeP), and ethyl protocatechuate (OH-EtP) (Log BAF > 3.7), exhibited varying degrees of potential bioaccumulation effect in the majority of organism samples. Furthermore, all tested chemicals in this study were at low risk quotient (RQ) levels for acute and chronic toxicity in seawater. However, the target hazard quotient (THQ) values of two paraben metabolites, 4-HB and benzoic acid (BA), were higher than 1, which indicates that paraben metabolites have the potential to adsorb into organisms, and their associated human health risks should be of great concern. Overall, the study results suggest that the occurrence and risks of emerging EDCs in coastal waters are deserving of further studies, especially in densely populated regions of the world.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Estuários , Parabenos/análise , Fenóis/análise , Rios/química , Organismos Aquáticos/metabolismo , Compostos Benzidrílicos/metabolismo , China , Disruptores Endócrinos/metabolismo , Humanos , Parabenos/metabolismo , Fenóis/metabolismo
18.
Ecotoxicol Environ Saf ; 173: 192-202, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30772709

RESUMO

Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). The distribution of BPS has recently become an important issue worldwide, but investigations on the toxicity and mechanisms of BPS remain limited. A review of the literature reveals that BPS has widespread presence in environmental media, such as indoor dust, surface water, sediments, and sewage sludge. It has been detected in plants, paper products, some food items, and even in the human body. In addition, compared to BPA, BPS has a lower acute toxicity, similar or less endocrine disruption, similar neurotoxicity and immunotoxicity, and lower reproductive and developmental toxicity. The mechanisms underlying BPS toxicity may be related to the chemical properties of BPS in the human body, including interactions with estrogen receptors, and binding to DNA and some proteins, subsequently including exerting oxidative stress. However, further investigation on the potential risks of BPS to humans and its mechanisms of toxicity should be conducted to better understand and control the risks of such novel chemicals.


Assuntos
Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Fenóis/análise , Fenóis/toxicidade , Sulfonas/análise , Sulfonas/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Humanos
19.
Small ; 14(35): e1802045, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30084537

RESUMO

In this research, bulk graphitic carbon nitride (g-C3 N4 ) is exfoliated and transferred to the carbon nitride nanosheets (CNNSs), which are then coupled with MIL-88B(Fe) to form the hybrid. From the results of the powder X-ray diffraction, scanning electronic microscopy and thermogravimetric analysis, it is found that the doping of CNNSs on the surface of MIL-88(Fe) could maintain the basic structure of MIL-88B(Fe), and the smaller dimension of CNNSs might influence the crystallization process of metal-organic frameworks (MOFs) compared to bulk g-C3 N4 . Besides, the effects of the CNNSs incorporation on photocatalysis are also investigated. Through the photoluminescence spectra, electrochemical measurements, and photocatalytic experiments, the hybrid containing 6% CNNSs is certified to possess the highest catalytic activity to degrade methylene blue and reduce Cr(VI) under visible light. The improvement of the photocatalytic performance can be attributed to the matched energy level which favors the formation of the heterojunctions. Besides, it promotes the charge migration such that the contact between MOFs and CNNSs is more intimate, which can be inferred from the electronic microscopy images. Finally, a possible photocatalytic mechanism is put forward by the relative calculation and the employment of the scavengers to trap the active species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA