Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Pathol ; 258(3): 213-226, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894849

RESUMO

Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, an effective therapy for vascular calcification is still lacking. The ketone body ß-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated the NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions; thus, nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ácido 3-Hidroxibutírico/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Regulação para Baixo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Cetonas/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Ratos , Insuficiência Renal Crônica/patologia , Proteínas Repressoras/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle
2.
Small ; 18(35): e2202705, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35923138

RESUMO

Because of the insufficiency of hydrogen peroxide, the relatively low rate of Fenton reaction, and the active glutathione (GSH) peroxidase 4 (GPX4) in tumor cells, it is difficult to achieve a desirable efficacy of ferroptosis therapy (FT) for tumors based on nanomaterials. Inspired by the concept of "cyclotron" in physics, in this study, a new concept of cycloacceleration of reactive oxygen species (ROS) generation in tumor cells to realize high-performance FT of tumors is proposed. Typically, a magnetic resonance imaging (MRI) contrast agent of dotted core-shell Fe3 O4 /Gd2 O3 hybrid nanoparticles (FGNPs) is prepared based on exceedingly small magnetic iron oxide nanoparticles (ES-MIONs). Sorafenib (SFN) is loaded and poly(ethylene glycol) methyl ether-poly(propylene sulfide)-NH2 (mPEG-PPS-NH2 ) is grafted on the surface of FGNP to generate SA-SFN-FGNP via self-assembly. The results of in vitro and in vivo demonstrate SA-SFN-FGNP can work with the acidic tumor microenvironment and endosomal conditions, Fenton reaction and system XC - , and generate cyclic reactions in tumor cells, resulting in specific cycloacceleration of ROS generation for high-performance FT of tumors. The very high longitudinal relaxivity (r1 , 33.43 mM-1 s-1 , 3.0 T) makes sure that the SA-SFN-FGNP can be used for MRI-guided FT of tumors.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Meios de Contraste , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio , Microambiente Tumoral
3.
Macromol Rapid Commun ; 43(17): e2200255, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35587472

RESUMO

Compared to traditional postoperative radiation and chemotherapy, immune checkpoint blockade (ICB) therapy demonstrates superiority by provoking own immune system to cure cancer completely even for some terminally ill patients. However, systemic administration of ICB is liable to cause severe immunity inflammation or immune storm. Here, an injectable, near infrared (NIR) responsive, multifunctional nanocomposite thermogel as a local ICB delivery system for cancer postsurgical therapy is proposed. By copolymerization of thermosensitive and zwitterionic monomer, the injectable thermogel with adjustable sol-gel transition temperature is obtained. Afterward, combined with functional mesoporous nanoparticles, the platform can absorb NIR light and transfer it into heat. The generated heat will promote retro Diels-Alder (D-A) reaction to degrade coating layer on nanoparticle, achieving NIR controlled ICB release. Furthermore, the local ICB delivery system is applied on an osteosarcoma postsurgical recurrence model and results indicate the platform with favorable biocompatibility can avoid early leakage of cargos and greatly increase drug content at tumor site. Besides, long-term controlled ICB release of the system effectively improves the amount of active T cells, resulting in excellent antitumor recurrence effect. Overall, this work suggests the local injectable nanocomposite thermogel is expected to be a promising tool for cancer postoperative therapy.


Assuntos
Neoplasias Ósseas , Nanocompostos , Nanopartículas , Osteossarcoma , Humanos , Nanocompostos/uso terapêutico , Polimerização
4.
J Nanobiotechnology ; 20(1): 350, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908057

RESUMO

Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis, and contrast agents (CAs) can improve the sensitivity MRI. To overcome the problems of commercial Gd chelates-based T1 CAs, commercial magnetic iron oxide nanoparticles (MIONs)-based T2 CAs, and reported exceedingly small MIONs (ES-MIONs)-based T1 CAs, in this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility using poly (aspartic acid) (PASP) as a stabilizer for T1-weighted MRI of tumors. After optimization of the synthesis conditions, the final obtained ES-MION9 with 3.7 nm of diameter has a high r1 value (7.0 ± 0.4 mM-1 s-1) and a low r2/r1 ratio (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility because of the excessive -COOH from the stabilizer PASP. The pharmacokinetics and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger capability of enhancing the MRI contrast comparing with the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 with excellent water-dispersibility is an ideal T1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Animais , Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/patologia , Distribuição Tecidual , Água
5.
Opt Express ; 29(8): 11570-11581, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984934

RESUMO

The Vernier effect magnifies optical sensitivity by the superposition of two spectra with slightly shifted frequencies from a sensing interferometer (SIM) and a reference interferometer (RIM). In this study, we demonstrate that the Vernier effect can be obtained through a single interferometer, which detects the changed signal and provides an artificial reference spectrum (ARS) to be superposed with the changed signal spectrum. The ARS extracted by spatial frequency down-conversion of one sensing spectrum in the signal processing is not affected by environmental changes and can be detuned at an arbitrarily small amount with the measured signal spectrum. This approach is simpler and accurate and provides ultrahigh sensitivity. To validate the principle, a Mach-Zehnder (MZ) interferometer based on a dual-mode microfiber was designed for sensing the refractive index (RI) change magnification, and a high sensitivity of 71354.58 nm/refractive index unit (RIU) was obtained with good linearity.

6.
Nano Lett ; 20(3): 2062-2071, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096643

RESUMO

Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity. Moreover, ACSN not only dramatically improved the solubility and stability of ATO and Ce6 but also enhanced the cellular internalization and intratumoral permeability. Abundant investigations confirmed that ACSN effectively suppressed the oxygen consumption to reverse the tumor hypoxia by inhibiting mitochondrial respiration. Benefiting from the synergistic mechanism, an enhanced PDT effect of ACSN was observed on the inhibition of tumor growth. This self-delivery system for oxygen-economized PDT might be a potential appealing clinical strategy for tumor eradication.


Assuntos
Neoplasias Mamárias Experimentais , Nanomedicina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
7.
Small ; 16(11): e1906870, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091159

RESUMO

The market of available contrast agents for clinical magnetic resonance imaging (MRI) has been dominated by gadolinium (Gd) chelates based T1 contrast agents for decades. However, there are growing concerns about their safety because they are retained in the body and are nephrotoxic, which necessitated a warning by the U.S. Food and Drug Administration against the use of such contrast agents. To ameliorate these problems, it is necessary to improve the MRI efficiency of such contrast agents to allow the administration of much reduced dosages. In this study, a ten-gram-scale facile method is developed to synthesize organogadolinium complex nanoparticles (i.e., reductive bovine serum albumin stabilized Gd-salicylate nanoparticles, GdSalNPs-rBSA) with high r1 value of 19.51 mm-1 s-1 and very low r2 /r1 ratio of 1.21 (B0 = 1.5 T) for high-contrast T1 -weighted MRI of tumors. The GdSalNPs-rBSA nanoparticles possess more advantages including low synthesis cost (≈0.54 USD per g), long in vivo circulation time (t1/2 = 6.13 h), almost no Gd3+ release, and excellent biosafety. Moreover, the GdSalNPs-rBSA nanoparticles demonstrate excellent in vivo MRI contrast enhancement (signal-to-noise ratio (ΔSNR) ≈ 220%) for tumor diagnosis.


Assuntos
Nanopartículas , Neoplasias , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem
8.
Opt Express ; 28(3): 4145-4155, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122072

RESUMO

An ultrasensitive refractive index (RI) sensor based on enhanced Vernier effect is proposed, which consists of two cascaded fiber core-offset pairs. One pair functions as a Mach-Zehnder interferometer (MZI), the other with larger core offset as a low-finesse Fabry-Perot interferometer (FPI). In traditional Vernier-effect based sensors, an interferometer insensitive to environment change is used as sensing reference. Here in the proposed sensor, interference fringes of the MZI and the FPI shift to opposite directions as ambient RI varies, and to the same direction as surrounding temperature changes. Thus, the envelope of superimposed fringe manifests enhanced Vernier effect for RI sensing while reduced Vernier effect for temperature change. As a result, an ultra-high RI sensitivity of -87261.06 nm/RIU is obtained near the RI of 1.33 with good linearity, while the temperature sensitivity is as low as 204.7 pm/ °C. The proposed structure is robust and of low cost. Furthermore, the proposed scheme of enhanced Vernier effect provides a new perspective and idea in other sensing field.

9.
Med Sci Monit ; 23: 4109-4116, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841638

RESUMO

BACKGROUND In the present study, we explored the protective effect and mechanism of action of boldine (BOL) against neural apoptosis, which is a mediator of TBI. MATERIAL AND METHODS The effect of BOL on mitochondrial and cytosol proteins of extracted from cerebral cortical tissue of mice was evaluated. The grip test was used to assess the neurological deficit and brain water content of the subjects after administration of BOL to assess its effect on SOD, GSH, and MDA activity in brain ischemic tissues. To further confirm the effect of the BOL, the histopathological analysis and morphology of neurons were studied by Nissl staining. The effect of BOL against TBI-induced neural apoptosis by immuno-histochemistry and Western blotting assay were also studied. RESULTS BOL showed significant improvement against TBI in a dose-dependent manner. In the BOL-treated group, the apoptotic index was significantly reduced, but the level of caspase-3 was greatly diminished. Additionally, the level of the Bax in mitochondria (mit) and cytosol was elevated in the TBI-treated group as compared to the sham group. Further BOL at the test dose causes significant reduction in the level of mitochondrial MDA together with increase in SOD activity as compared to the TBI alone group. CONCLUSIONS BOL showed a cerebroprotective effect against TBI by attenuating the oxidative stress and the mitochondrial apoptotic pathway. It also inhibited mitochondrial Bax translocation and cytochrome c release.


Assuntos
Aporfinas/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Citocromos c/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Proteína X Associada a bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Caspases/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Biochim Biophys Acta ; 1850(2): 419-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463324

RESUMO

BACKGROUND: Poly(amidoamine) (PAMAM) dendrimers are widely used biomedical polymers, which are extensively applied in drug delivery, gene delivery, contrast agent, etc. In these biomedical applications, the bio-safety of the PAMAM dendrimers is a critical issue, which affects not only their toxicity to the host but also the expected in vivo biofunctions of the materials. To clarify the bio-safety of PAMAM dendrimers, the effects of generation 5 PAMAM dendrimers with amine, hydroxyl or carboxyl groups on immune molecules were explored in this work. METHODS: Specifically, the effect of the PAMAM dendrimers on the secondary structure and conformation of immune molecule γ-globulin was studied by using ultraviolet-visible, fluorescence, and circular dichroism spectroscopies. The effect of the PAMAM dendrimers on complement activation was determined by enzyme-linked immunosorbent assay. Further, the effect of the PAMAM dendrimers on antigen-antibody reaction was studied by using human red blood cell agglutination assay. RESULTS: The results showed that, the PAMAM dendrimers could affect the secondary structure and conformation of γ-globulin, and inhibited complement activation. Generation 5 PAMAM dendrimer with carboxyl group at 10mg/mL impaired red blood cell (RBC) antigen-antibody reaction. CONCLUSIONS: From these results, the effects of the PAMAM dendrimers on immune molecules depend on their bulk structure and surface groups. GENERAL SIGNIFICANCE: This work provides important information for the immunocompatibility evaluation, preclinical design, and clinical applications of PAMAM dendrimers.


Assuntos
Reações Antígeno-Anticorpo , Dendrímeros/química , Eritrócitos/química , gama-Globulinas/química , Eritrócitos/imunologia , Feminino , Humanos , Masculino , Relação Estrutura-Atividade , gama-Globulinas/imunologia
11.
J Nanosci Nanotechnol ; 16(3): 2336-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455638

RESUMO

Drug-loaded nanoparticles from 'Ershiwuwei Shanhu' Pill (ESP) inducing cellular swelling of the SH-SY5Y neuroblastoma cells were investigated. Electron microscope was used to observe nanoparticles existing in the freeze-dried supernatant of 'Ershiwuwei Shanhu' Pill. Drug-free nanoparticles were obtained from the solution of drug-loaded nanoparticles via dialysis. The size and zeta potential of two kinds of nanoparticles were tested by granularmetric analysis and surface charge analysis. Results showed that nanoparticles could penetrate into cellular nucleus and caused cell swelling. CCK8 analysis implied that low concentration of drug-free nanoparticles from 'Ershiwuwei Shanhu' Pill can induce cell proliferation of the SH-SY5Y neuroblastoma cells, while drug-loaded nanoparticles can reduce cell viability through NF-κB pathway. Drug-loaded nanoparticles existed in 'Ershiwuwei Shanhu' pill might play a vital role during pharmacotherapy, which served as nanocarriers in delivering drugs into cells.


Assuntos
Portadores de Fármacos , Nanopartículas , Neuroblastoma/patologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Colecistocinina/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/metabolismo
12.
RSC Adv ; 14(11): 7517-7527, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440275

RESUMO

Intraoperative bleeding is a pivotal factor in the initiation of early recurrence and tumor metastasis following breast cancer excision. Distinct advantages are conferred upon postoperative breast cancer treatment through the utilization of locally administered implant therapies. This study devised a novel 3D sponge implant containing cisplatin-loaded chitosan-calcium alginate MPs capable of exerting combined chemotherapy and hemostasis effects. This innovative local drug-delivery implant absorbed blood and residual tumor cells post-tumor resection. Furthermore, the cisplatin-loaded chitosan-calcium alginate MPs sustainably targeted and eliminated cancer cells, thereby diminishing the risk of local recurrence and distant metastasis. This hydrogel material can also contribute to breast reconstruction, indicating the potential application of the 3D sponge in drug delivery for breast cancer treatment.

13.
Bioact Mater ; 35: 362-381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379697

RESUMO

Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium. More importantly, inducing implanted cardiomyocytes (CMs) adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair. Herein, a functional Cig/(TA-Cu) CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid (TA)-chelated Cu2+ (TA-Cu complex) via a green method. This CP possessed microstructural anisotropy, electrical conductivity and mechanical properties similar to natural myocardium, which could promote elongation, orientation, maturation, and functionalization of CMs. Besides, the Cig/(TA-Cu) CP could efficiently scavenge reactive oxygen species, reduce CM apoptosis, ultimately facilitating myocardial electrical integration, promoting vascular regeneration and improving cardiac function. Together, our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.

14.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956062

RESUMO

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Assuntos
MicroRNAs , Infarto do Miocárdio , Nanopartículas , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/administração & dosagem , Animais , Infarto do Miocárdio/genética , Masculino , Ratos , Nanopartículas/administração & dosagem , Nanopartículas/química , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Contração Miocárdica/efeitos dos fármacos , Administração Intravenosa , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo
15.
Adv Healthc Mater ; : e2400897, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626922

RESUMO

Macroporous hydrogels offer physical supportive spaces and bio-instructive environment for the seeded cells, where cell-scaffold interactions directly influence cell fates and subsequently affect tissue regeneration post-implantation. Effectively modifying bioactive motifs at the inner pore surface provides appropriate niches for cell-scaffold interactions. A molecular imprinting method and sacrificial templates are introduced to prepare inner pore surface modification in the macroporous hydrogels. In detail, acrylated bisphosphonates (Ac-BPs) chelating to templates (CaCO3 particles) are anchored on the inner pore surface of the methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA)-poly (ethylene glycol) diacrylate (PEGDA) macroporous hydrogel (GHP) to form a functional hydrogel scaffold (GHP-int-BP). GHP-int-BP, but not GHP, effectively crafts artificial cell niches to substantially alter cell fates, including osteogenic induction and osteoclastic inhibition, and promote in situ bone regeneration. These findings highlight that molecular imprinting on the inner pore surface in the hydrogel efficiently creates orthogonally additive bio-instructive scaffolds for bone regeneration.

16.
Carbohydr Polym ; 333: 121991, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494240

RESUMO

Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.


Assuntos
Queimaduras , Quitosana , Polifenóis , Humanos , Antioxidantes/farmacologia , Queimaduras/tratamento farmacológico , Materiais Biocompatíveis , Hidrogéis/farmacologia , Neovascularização Patológica , Cicatrização , Antibacterianos
17.
Biomed Mater ; 19(3)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626779

RESUMO

It is well-established that multi-scale porous scaffolds can guide axonal growth and facilitate functional restoration after spinal cord injury (SCI). In this study, we developed a novel mussel shell-inspired conductive scaffold for SCI repair with ease of production, multi-scale porous structure, high flexibility, and excellent biocompatibility. By utilizing the reducing properties of polydopamine, non-conductive graphene oxide (GO) was converted into conductive reduced graphene oxide (rGO) and crosslinkedin situwithin the mussel shells.In vitroexperiments confirmed that this multi-scale porous Shell@PDA-GO could serve as structural cues for enhancing cell adhesion, differentiation, and maturation, as well as promoting the electrophysiological development of hippocampal neurons. After transplantation at the injury sites, the Shell@PDA-GO provided a pro-regenerative microenvironment, promoting endogenous neurogenesis, triggering neovascularization, and relieving glial fibrosis formation. Interestingly, the Shell@PDA-GO could induce the release of endogenous growth factors (NGF and NT-3), resulting in the complete regeneration of nerve fibers at 12 weeks. This work provides a feasible strategy for the exploration of conductive multi-scale patterned scaffold to repair SCI.


Assuntos
Materiais Biocompatíveis , Bivalves , Grafite , Regeneração Nervosa , Polímeros , Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Porosidade , Grafite/química , Polímeros/química , Materiais Biocompatíveis/química , Indóis/química , Exoesqueleto/química , Diferenciação Celular , Condutividade Elétrica , Neurônios , Ratos , Ratos Sprague-Dawley , Adesão Celular , Neurogênese , Engenharia Tecidual/métodos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/química , Hipocampo
18.
Chin J Traumatol ; 16(4): 249-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23910682

RESUMO

Pneumocephalus is the presence of air in the cranial vault. The common etiologies of pneumocephalus are brain trauma and cranial surgery. We report a case of a 26-year-old man with brain trauma who developed diffuse pneumocephalus after sneezing. CT scan was performed on arrival, and the image showed subarachnoid hemorrhage without pneumocephalus. On the seventh day after a big sneeze brain CT scan was re-performed, which showed pneumocephalus. After another ten days of treatment, the patient was discharged without any symptoms.


Assuntos
Lesões Encefálicas/complicações , Pneumocefalia/etiologia , Espirro , Adulto , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia , Humanos , Masculino , Pneumocefalia/diagnóstico por imagem , Pneumocefalia/terapia , Tomografia Computadorizada por Raios X
19.
Artigo em Inglês | MEDLINE | ID: mdl-36576112

RESUMO

Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanomedicina , Neoplasias , Humanos , Imunoterapia , Neoplasias/terapia , Imunidade , Microambiente Tumoral
20.
ACS Nano ; 17(20): 20246-20261, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37782701

RESUMO

Restoring damaged myocardial tissue with therapeutic exogenous cells still has some limitations, such as immunological rejection, immature cardiac properties, risk of tumorigenicity, and a low cell survival rate in the ischemic myocardium microenvironment. Activating the endogenous stem cells with functional biomaterials might overcome these limitations. Research has highlighted the multiple differentiation potential of epicardial cells via epithelial-mesenchymal transition (EMT) in both heart development and cardiac regeneration. In our previous research, a carboxylic gelatin-methacrylate (carbox-GelMA) nanoparticle (NP) was fabricated to carry ammonium persulfate (APS), and APS-loaded carbox-GelMA NPs (NPs/APS) could drive the EMT of MCF-7 cells in vitro and promote cancer cell migration and invasion in vivo. The present study explored the roles of functional NPs/APS in the EMT of Wilms' tumor 1-positive (WT1+) epicardial cells and in the repair of myocardial infarction (MI). The WT1+ epicardial cells transformed into endothelial-like cells after being treated with NPs/APS in vitro, and the cardiac functions were improved significantly after injecting NPs/APS into the infarcted hearts in vivo. Furthermore, simultaneous activation of both autophagy and the mTOR pathway was confirmed during the NPs/APS-induced EMT process in WT1+ epicardial cells. Together, this study highlights the function of NPs/APS in the repair of MI.


Assuntos
Infarto do Miocárdio , Nanopartículas , Humanos , Transição Epitelial-Mesenquimal , Gelatina , Metacrilatos , Infarto do Miocárdio/patologia , Serina-Treonina Quinases TOR , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA