Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257624

RESUMO

Current road extraction models from remote sensing images based on deep learning are computationally demanding and memory-intensive because of their high model complexity, making them impractical for mobile devices. This study aimed to develop a lightweight and accurate road extraction model, called Road-MobileSeg, to address the problem of automatically extracting roads from remote sensing images on mobile devices. The Road-MobileFormer was designed as the backbone structure of Road-MobileSeg. In the Road-MobileFormer, the Coordinate Attention Module was incorporated to encode both channel relationships and long-range dependencies with precise position information for the purpose of enhancing the accuracy of road extraction. Additionally, the Micro Token Pyramid Module was introduced to decrease the number of parameters and computations required by the model, rendering it more lightweight. Moreover, three model structures, namely Road-MobileSeg-Tiny, Road-MobileSeg-Small, and Road-MobileSeg-Base, which share a common foundational structure but differ in the quantity of parameters and computations, were developed. These models varied in complexity and were available for use on mobile devices with different memory capacities and computing power. The experimental results demonstrate that the proposed models outperform the compared typical models in terms of accuracy, lightweight structure, and latency and achieve high accuracy and low latency on mobile devices. This indicates that the models that integrate with the Coordinate Attention Module and the Micro Token Pyramid Module surpass the limitations of current research and are suitable for road extraction from remote sensing images on mobile devices.

2.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275555

RESUMO

To address the problem of ignoring unpaved roads when planning off-road emergency rescue paths, an improved A* algorithm that incorporates road factors is developed to create an off-road emergency rescue path planning model in this study. To reduce the number of search nodes and improve the efficiency of path searches, the current node is classified according to the angle between the line connecting the node and the target point and the due east direction. Additionally, the search direction is determined in real time through an optimization method to improve the path search efficiency. To identify the path with the shortest travel time suitable for emergency rescue in wilderness scenarios, a heuristic function based on the fusion of road factors and a path planning model for off-road emergency rescue is developed, and the characteristics of existing roads are weighted in the process of path searching to bias the selection process toward unpaved roads with high accessibility. The experiments show that the improved A* algorithm significantly reduces the travel time of off-road vehicles and that path selection is enhanced compared to that with the traditional A* algorithm; moreover, the improved A* algorithm reduces the number of nodes by 16.784% and improves the search efficiency by 27.18% compared with the traditional 16-direction search method. The simulation results indicate that the improved algorithm reduces the travel time of off-road vehicles by 21.298% and improves the search efficiency by 93.901% compared to the traditional A* algorithm, thus greatly enhancing off-road path planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA