Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Genet Genomics ; 49(7): 599-611, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636740

RESUMO

The CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immune homeostasis in healthy individuals. Results from clinical trials of Treg cell-based therapies in patients with graft versus host disease (GVHD), type 1 diabetes (T1D), liver transplantation, and kidney transplantation have demonstrated that adoptive transfer of Treg cells is emerging as a promising strategy to promote immune tolerance. Here we provide an overview of recent progresses and current challenges of Treg cell-based therapies. We summarize the completed and ongoing clinical trials with human Treg cells. Notably, a few of the chimeric antigen receptor (CAR)-Treg cell therapies are currently undergoing clinical trials. Meanwhile, we describe the new strategies for engineering Treg cells used in preclinical studies. Finally, we envision that the use of novel synthetic receptors, metabolic regulators, combined therapies, and in vivo generated antigen-specific or engineered Treg cells through the delivery of modified mRNA and CRISPR-based gene editing will further promote the advances of next-generation Treg cell therapies.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T Reguladores , Transferência Adotiva , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/terapia , Humanos , Imunoterapia Adotiva/métodos
2.
J Mol Cell Biol ; 11(2): 93-106, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30428057

RESUMO

Glucose metabolism plays a key role in thymocyte development. The mammalian target of rapamycin complex 2 (mTORC2) is a critical regulator of cell growth and metabolism, but its role in early thymocyte development and metabolism has not been fully studied. We show here that genetic ablation of Sin1, an essential component of mTORC2, in T lineage cells results in severely impaired thymocyte development at the CD4-CD8- double negative (DN) stages but not at the CD4+CD8+ double positive (DP) or later stages. Notably, Sin1-deficient DN thymocytes show markedly reduced proliferation and glycolysis. Importantly, we discover that the M2 isoform of pyruvate kinase (PKM2) is a novel and crucial Sin1 effector in promoting DN thymocyte development and metabolism. At the molecular level, we show that Sin1-mTORC2 controls PKM2 expression through an AKT-dependent PPAR-γ nuclear translocation. Together, our study unravels a novel mTORC2-PPAR-γ-PKM2 pathway in immune-metabolic regulation of early thymocyte development.


Assuntos
Proteínas de Transporte/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Proliferação de Células , Glicólise/fisiologia , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Camundongos Transgênicos , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
3.
Cell Metab ; 30(2): 290-302.e5, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31204281

RESUMO

CD8+ T cell expansions and functions rely on glycolysis, but the mechanisms underlying CD8+ T cell glycolytic metabolism remain elusive. Here, we show that acylglycerol kinase (AGK) is required for the establishment and maintenance of CD8+ T cell metabolic and functional fitness. AGK deficiency dampens CD8+ T cell antitumor functions in vivo and perturbs CD8+ T cell proliferation in vitro. Activation of phosphatidylinositol-3-OH kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, which mediates elevated CD8+ T cell glycolysis, is tightly dependent on AGK kinase activity. Mechanistically, T cell antigen receptor (TCR)- and CD28-stimulated recruitment of PTEN to the plasma membrane facilitates AGK-PTEN interaction and AGK-triggered PTEN phosphorylation, thereby restricting PTEN phosphatase activity in CD8+ T cells. Collectively, these results demonstrate that AGK maintains CD8+ T cell metabolic and functional state by restraining PTEN activity and highlight a critical role for AGK in CD8+ T cell metabolic programming and effector function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Feminino , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos
4.
Cell Mol Immunol ; 16(9): 757-769, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30705387

RESUMO

Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas de Transporte/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linfócitos B/imunologia , Proliferação de Células , Células Cultivadas , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais
5.
J Exp Med ; 215(9): 2463-2476, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30115741

RESUMO

Metabolic programs are crucial for regulatory T (T reg) cell stability and function, but the underlying mechanisms that regulate T reg cell metabolism are elusive. Here, we report that lysosomal TRAF3IP3 acts as a pivotal regulator in the maintenance of T reg cell metabolic fitness. T reg-specific deletion of Traf3ip3 impairs T reg cell function, causing the development of inflammatory disorders and stronger antitumor T cell responses in mice. Excessive mechanistic target of rapamycin complex 1 (mTORC1)-mediated hyper-glycolytic metabolism is responsible for the instability of TRAF3IP3-deficient T reg cells. Mechanistically, TRAF3IP3 restricts mTORC1 signaling by recruiting the serine-threonine phosphatase catalytic subunit (PP2Ac) to the lysosome, thereby facilitating the interaction of PP2Ac with the mTORC1 component Raptor. Our results define TRAF3IP3 as a metabolic regulator in T reg cell stability and function and suggest a lysosome-specific mTORC1 signaling mechanism that regulates T reg cell metabolism.


Assuntos
Proteínas de Transporte , Glicólise , Lisossomos , Proteínas de Membrana , Transdução de Sinais , Linfócitos T Reguladores , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Glicólise/genética , Glicólise/imunologia , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/imunologia , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia
6.
Nat Med ; 22(5): 539-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27064449

RESUMO

Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-ß signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4(-/-)) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption.


Assuntos
Remodelação Óssea/genética , Reabsorção Óssea/genética , Osteogênese/genética , Ligante RANK/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Tumor de Células Gigantes do Osso/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Leucócitos Mononucleares , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Fatores de Transcrição NFATC/metabolismo , Imagem Óptica , Osteoporose/genética , Osteoporose/metabolismo , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Microtomografia por Raio-X
7.
Cancer Res ; 73(20): 6206-18, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24008316

RESUMO

Adhesion G-protein-coupled receptors (GPCR), which contain adhesion domains in their extracellular region, have been found to play important roles in cell adhesion, motility, embryonic development, and immune response. Because most adhesion molecules with adhesion domains have vital roles in cancer metastasis, we speculated that adhesion GPCRs are potentially involved in cancer metastasis. In this study, we identified GPR116 as a novel regulator of breast cancer metastasis through expression and functional screening of the adhesion GPCR family. We found that knockdown of GPR116 in highly metastatic (MDA-MB-231) breast cancer cells suppressed cell migration and invasion. Conversely, ectopic GPR116 expression in poorly metastatic (MCF-7 and Hs578T) cells promoted cell invasion. We further showed that knockdown of GPR116 inhibited breast cancer cell metastasis in two mammary tumor metastasis mouse models. Moreover, GPR116 modulated the formation of lamellipodia and actin stress fibers in cells in a RhoA- and Rac1-dependent manner. At a molecular level, GPR116 regulated cell motility and morphology through the Gαq-p63RhoGEF-RhoA/Rac1 pathway. The biologic significance of GPR116 in breast cancer is substantiated in human patient samples, where GPR116 expression is significantly correlated with breast tumor progression, recurrence, and poor prognosis. These findings show that GPR116 is crucial for the metastasis of breast cancer and support GPR116 as a potential prognostic marker and drug target against metastatic human breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , GTP Fosfo-Hidrolases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Metástase Neoplásica , Receptores Acoplados a Proteínas G/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Análise de Sobrevida , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA