Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; : PDIS07231369RE, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37822099

RESUMO

Black point, a severe global wheat disease, necessitates deploying resistant cultivars for effective control. However, susceptibility remains prevalent among most wheat cultivars. Identifying new sources of resistance and understanding their mechanisms are crucial for breeding resistant cultivars. This study pinpointed black point resistance in an ethyl methane sulfonate (EMS)-mutagenized wheat population of Wanyuanbai 1 (WYB) and analyzed resistant mutants using RNA-Seq. The findings revealed the following: (i) wyb-18, among 10,008 EMS-mutagenized lines, exhibited robust resistance with significantly lower black point incidence under artificial Bipolaris sorokiniana inoculation in 2020 and 2021 (average incidence of 5.2% over 2 years), markedly reduced compared with WYB (50.9%). (ii) wyb-18 kernels displayed black point symptoms at 12 days after inoculation (dai), 3 days later than WYB. At 15 dai, wyb-18 kernels had isolated black spots, unlike WYB kernels, where the entire embryo turned black. (iii) wyb-18 showed heightened antioxidant enzyme activity, including peroxidase, catalase, and superoxide dismutase. (iv) Analysis of 543 differentially expressed genes between wyb-18 and WYB at 9 dai identified enrichment in the MAPK signaling pathway through KEGG analysis. Ten genes in this pathway exhibited upregulated expression, while one was downregulated in wyb-18. Among these genes, PR1, WRKY11, SAPK5, and TraesCS1A02G326800 (chitin recognition protein) consistently showed upregulation in wyb-18, making them potential candidates for black point resistance. These results offer valuable germplasm resources for breeding and novel insights into the mechanisms of black point resistance.

2.
Plant Dis ; 108(2): 426-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578361

RESUMO

Crown rot caused by Fusarium pseudograminearum is a devastating wheat disease worldwide. In addition to yield losses, the fungi causing Fusarium crown rot (FCR) also deteriorate the quality and safety of food because of the production of mycotoxins. Planting resistant cultivars is an effective way to control FCR. However, most wheat cultivars are susceptible to FCR. Therefore, development of new sources and detection of loci for FCR resistance are necessary. In the present study, a resistant mutant, fcrZ22, was identified from an ethyl methane sulfonate (EMS)-mutagenized population of the cultivar Zhoumai 22, and then fcrZ22 was crossed with the wild type to produce an F2 population. Genetic analysis of the F2 population was carried out by the mixed inheritance model of major genes plus polygenes, and 20 resistant and 20 susceptible plants were selected to assemble mixed pools. Combining 660K SNP arrays, the resistance loci were detected by bulked segregant analysis. The resistance to FCR caused by F. pseudograminearum in the F2 population was in accordance with the "mixed model with two major genes of additive-epistasis effect + additive-dominant polygenes," and the heritability of the major gene was 0.92. Twenty-one loci were detected, which were located on 10 chromosomes, namely, 1B (1), 1D (1), 2A (3), 1B (1), 3A (3), 3B (3), 4A (2), 5A (2), 7A (3), and 7B (2). Among the 21 loci, eight were new loci for FCR resistance. This is the first report of detecting loci for FCR resistance from a mutant. The results of the present study provided excellent germplasm resources for breeding wheat cultivars with FCR resistance and laid the foundation for fine mapping of FCR resistance loci.


Assuntos
Fusarium , Locos de Características Quantitativas , Fusarium/genética , Resistência à Doença/genética , Melhoramento Vegetal
3.
Mol Breed ; 43(2): 10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37313131

RESUMO

Black point disease is a serious concern in wheat production worldwide. In this study, we aimed to identify the major quantitative trait loci (QTL) for resistance to black point caused by Bipolaris sorokiniana and develop molecular markers for marker-assisted selection (MAS). A recombinant inbred line (RIL) population derived from a cross between PZSCL6 (highly susceptible) and Yuyou1 (moderately resistant) was evaluated for black point resistance at four locations under artificial inoculation with B. sorokiniana. Thirty resistant and 30 susceptible RILs were selected to form resistant and susceptible bulks, respectively, which were genotyped by the wheat 660 K SNP array. Two hundred and four single-nucleotide polymorphisms (SNPs) were identified, among which 41(20.7%), 34 (17.2%), 22 (11.1%), and 22 (11.1%) were located on chromosomes 5A, 5B, 4B, and 5D, respectively. The genetic linkage map for the RIL population was constructed using 150 polymorphic SSR and dCAPS markers. Finally, five QTL were detected on chromosomes 5A, 5B, and 5D, designated QBB.hau-5A, QBB.hau-5B.1, QBB.hau-5B.2, QBB.hau-5D.1, and QBB.hau-5D.2, respectively. All resistance alleles were contributed by the resistant parent Yuyou1. QBB.hau-5D.1 is likely to be a new locus for black point resistance. The markers Xwmc654 and Xgwm174 linked to QBB.hau-5A and QBB.hau-5D.1, respectively, have potential utility in MAS-based breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01356-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA