Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119914, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233031

RESUMO

Riparian zones play a vital role in the river ecosystem. Solutes in vertical riparian zones are transported being by alternating hydraulic gradients between river water and groundwater, due to natural or human activities. This study investigates the impacts of porous sediments and alternating rate of surface water-groundwater on nitrogen removal in the riparian zone through experiments based on the field sampled. The experimental results, combined with dimensionless numbers (Péclet and Damköhler) and Partial Least Squares-Path Modeling, analyze the nitrogen fate responding to hydrodynamics changes. The results show that increased sediment porosity contributes to the ammonium removal, particularly when the oxygen content of river water is low, with the removal rate up to 72.57%. High ammonium content and dissolved organic carbon (DOC) in rural rivers lead to a constant low-oxygen condition (4 mg/L) during surface water-groundwater alternation, and promote denitrification. This threatens groundwater with ammonium pollution and causes accumulation at the top of vertical riparian zones during upwelling, potentially causing secondary river pollution. However, increasing the alternating rate hinders the nitrate denitrification and drastically changes in the redox environment of the riparian zone, despite contributing to ammonium removal. Rapid oxygen consumption during aerobic metabolism and nitrification in groundwater-surface water exchange created favorable conditions for denitrification. Floodplains sediment porosity is unfavorable for nitrification. This study improves understanding of coupled hydrologic and solute processes in vertical riparian zones, informing strategies for optimizing nitrogen attenuation and riparian zone construction.

2.
Sci Total Environ ; 874: 162465, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36868283

RESUMO

Numerous elements, such as the degree of sewer degeneration, hydraulics, and geological conditions, influence the extent to which sewage pollutes the unsaturated zones of urban. The present study discussed the influence of sewer exfiltration on the urban unsaturated zone, using nitrogen from domestic sewage as a representative contaminant in combination with experiments, literature studies, modeling and sensitivity analysis. The study shows that soils with high sand content exhibit high permeability and strong nitrification capacity, and groundwater is more susceptible to contamination with nitrate. In contrast, the nitrogen in the clay texture or wet soils has short migration distances and a weak nitrification capacity. However, under such conditions, the accumulation of nitrogen can last for more than 10 years, and there is a possible threat of groundwater contamination due to the detection difficulty. The presence of sewer exfiltration and the damage degree of a sewer can be determined by the ammonium concentration at 1-2 m near the pipe or nitrate above the water table. The sensitivity analysis revealed that all parameters impact the nitrogen concentration in the unsaturated zone to varying degrees, four of which are the primary parameters: defect area, exfiltration flux, saturated water content and first-order response constant. In addition, changes in environmental conditions significantly influence the boundaries of the pollution plume, especially the horizontal. The research data collected in this paper will not only allow for a rigorous assessment of the study scenarios but will also provide data support for other researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA