Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 50(7): 4430-4442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762594

RESUMO

BACKGROUND: Delineation of Organs-at-Risks (OARs) is an important step in radiotherapy treatment planning. As manual delineation is time-consuming, labor-intensive and affected by inter- and intra-observer variability, a robust and efficient automatic segmentation algorithm is highly desirable for improving the efficiency and repeatability of OAR delineation. PURPOSE: Automatic segmentation of OARs in medical images is challenged by low contrast, various shapes and imbalanced sizes of different organs. We aim to overcome these challenges and develop a high-performance method for automatic segmentation of 10 OARs required in radiotherapy planning for brain tumors. METHODS: A novel two-stage segmentation framework is proposed, where a coarse and simultaneous localization of all the target organs is obtained in the first stage, and a fine segmentation is achieved for each organ, respectively, in the second stage. To deal with organs with various sizes and shapes, a stratified segmentation strategy is proposed, where a High- and Low-Resolution Residual Network (HLRNet) that consists of a multiresolution branch and a high-resolution branch is introduced to segment medium-sized organs, and a High-Resolution Residual Network (HRRNet) is used to segment small organs. In addition, a label fusion strategy is proposed to better deal with symmetric pairs of organs like the left and right cochleas and lacrimal glands. RESULTS: Our method was validated on the dataset of MICCAI ABCs 2020 challenge for OAR segmentation. It obtained an average Dice of 75.8% for 10 OARs, and significantly outperformed several state-of-the-art models including nnU-Net (71.6%) and FocusNet (72.4%). Our proposed HLRNet and HRRNet improved the segmentation accuracy for medium-sized and small organs, respectively. The label fusion strategy led to higher accuracy for symmetric pairs of organs. CONCLUSIONS: Our proposed method is effective for the segmentation of OARs of brain tumors, with a better performance than existing methods, especially on medium-sized and small organs. It has a potential for improving the efficiency of radiotherapy planning with high segmentation accuracy.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia
2.
Comput Methods Programs Biomed ; 231: 107398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773591

RESUMO

BACKGROUND AND OBJECTIVE: Open-source deep learning toolkits are one of the driving forces for developing medical image segmentation models that are essential for computer-assisted diagnosis and treatment procedures. Existing toolkits mainly focus on fully supervised segmentation that assumes full and accurate pixel-level annotations are available. Such annotations are time-consuming and difficult to acquire for segmentation tasks, which makes learning from imperfect labels highly desired for reducing the annotation cost. We aim to develop a new deep learning toolkit to support annotation-efficient learning for medical image segmentation, which can accelerate and simplify the development of deep learning models with limited annotation budget, e.g., learning from partial, sparse or noisy annotations. METHODS: Our proposed toolkit named PyMIC is a modular deep learning library for medical image segmentation tasks. In addition to basic components that support development of high-performance models for fully supervised segmentation, it contains several advanced components that are tailored for learning from imperfect annotations, such as loading annotated and unannounced images, loss functions for unannotated, partially or inaccurately annotated images, and training procedures for co-learning between multiple networks, etc. PyMIC is built on the PyTorch framework and supports development of semi-supervised, weakly supervised and noise-robust learning methods for medical image segmentation. RESULTS: We present several illustrative medical image segmentation tasks based on PyMIC: (1) Achieving competitive performance on fully supervised learning; (2) Semi-supervised cardiac structure segmentation with only 10% training images annotated; (3) Weakly supervised segmentation using scribble annotations; and (4) Learning from noisy labels for chest radiograph segmentation. CONCLUSIONS: The PyMIC toolkit is easy to use and facilitates efficient development of medical image segmentation models with imperfect annotations. It is modular and flexible, which enables researchers to develop high-performance models with low annotation cost. The source code is available at:https://github.com/HiLab-git/PyMIC.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Coração , Software , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA