Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO J ; 41(8): e110070, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35285528

RESUMO

Transposable elements (TEs) constitute a major threat to genome stability and are therefore typically silenced by epigenetic mechanisms. In response, some TEs have evolved counteracting systems to suppress epigenetic silencing. In the model plant Arabidopsis thaliana, two such anti-silencing systems have been identified and found to be mediated by the VANC DNA-binding proteins encoded by VANDAL transposons. Here, we show that anti-silencing systems have rapidly diversified since their origin in eudicots by gaining and losing VANC-containing domains, such as DUF1985, DUF287, and Ulp1, as well as target sequence motifs. We further demonstrate that these motifs determine anti-silencing specificity by sequence, density, and helical periodicity. Moreover, such rapid diversification yielded at least 10 distinct VANC-induced anti-silencing systems in Arabidopsis. Strikingly, anti-silencing of non-autonomous VANDALs, which can act as reservoirs of 24-nt small RNAs, is critical to prevent the demise of cognate autonomous TEs and to ensure their propagation. Our findings illustrate how complex co-evolutionary dynamics between TEs and host suppression pathways have shaped the emergence of new epigenetic control mechanisms.


Assuntos
Arabidopsis , Elementos de DNA Transponíveis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta , RNA Interferente Pequeno/genética
2.
PLoS Biol ; 21(3): e3001895, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961833

RESUMO

Phenotypic plasticity, the change in the phenotype of a given genotype in response to its environment of development, is a ubiquitous feature of life, enabling organisms to cope with variation in their environment. Theoretical studies predict that, under stationary environmental variation, the level of plasticity should evolve to match the predictability of selection at the timing of development. However, the extent to which patterns of evolution of plasticity for more integrated traits are mirrored by their underlying molecular mechanisms remains unclear, especially in response to well-characterized selective pressures exerted by environmental predictability. Here, we used experimental evolution with the microalgae Dunaliella salina under controlled environmental fluctuations, to test whether the evolution of phenotypic plasticity in responses to environmental predictability (as measured by the squared autocorrelation ρ2) occurred across biological levels, going from DNA methylation to gene expression to cell morphology. Transcriptomic analysis indicates clear effects of salinity and ρ2 × salinity interaction on gene expression, thus identifying sets of genes involved in plasticity and its evolution. These transcriptomic effects were independent of DNA methylation changes in cis. However, we did find ρ2-specific responses of DNA methylation to salinity change, albeit weaker than for gene expression. Overall, we found consistent evolution of reduced plasticity in less predictable environments for DNA methylation, gene expression, and cell morphology. Our results provide the first clear empirical signature of plasticity evolution at multiple levels in response to environmental predictability, and highlight the importance of experimental evolution to address predictions from evolutionary theory, as well as investigate the molecular basis of plasticity evolution.


Assuntos
Microalgas , Microalgas/genética , Microalgas/metabolismo , Fenótipo , Evolução Biológica , Metilação de DNA , Regulação da Expressão Gênica , Adaptação Biológica
3.
Nucleic Acids Res ; 52(11): 6285-6297, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676941

RESUMO

Epigenetic regulations, including chromatin accessibility, nucleosome positioning and DNA methylation intricately shape genome function. However, current chromatin profiling techniques relying on short-read sequencing technologies fail to characterise highly repetitive genomic regions and cannot detect multiple chromatin features simultaneously. Here, we performed Simultaneous Accessibility and DNA Methylation Sequencing (SAM-seq) of purified plant nuclei. Thanks to the use of long-read nanopore sequencing, SAM-seq enables high-resolution profiling of m6A-tagged chromatin accessibility together with endogenous cytosine methylation in plants. Analysis of naked genomic DNA revealed significant sequence preference biases of m6A-MTases, controllable through a normalisation step. By applying SAM-seq to Arabidopsis and maize nuclei we obtained fine-grained accessibility and DNA methylation landscapes genome-wide. We uncovered crosstalk between chromatin accessibility and DNA methylation within nucleosomes of genes, TEs, and centromeric repeats. SAM-seq also detects DNA footprints over cis-regulatory regions. Furthermore, using the single-molecule information provided by SAM-seq we identified extensive cellular heterogeneity at chromatin domains with antagonistic chromatin marks, suggesting that bivalency reflects cell-specific regulations. SAM-seq is a powerful approach to simultaneously study multiple epigenetic features over unique and repetitive sequences, opening new opportunities for the investigation of epigenetic mechanisms.


Assuntos
Arabidopsis , Cromatina , Metilação de DNA , Genoma de Planta , Zea mays , Arabidopsis/genética , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos/métodos , Nucleossomos/genética , Nucleossomos/metabolismo , Análise de Sequência de DNA/métodos , Zea mays/genética , Zea mays/metabolismo
4.
Annu Rev Genet ; 50: 467-491, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27732791

RESUMO

Transgenerational epigenetics is defined in opposition to developmental epigenetics and implies an absence of resetting of epigenetic states between generations. Unlike mammals, plants appear to be particularly prone to this type of inheritance. In this review, we summarize our knowledge about transgenerational epigenetics in plants, which entails heritable changes in DNA methylation. We emphasize the role of transposable elements and other repeat sequences in the creation of epimutable alleles. We also argue that because reprogramming of DNA methylation across generations seems limited in plants, the inheritance of DNA methylation defects results from the failure to reinforce rather than reset this modification during sexual reproduction. We compare genome-wide assessments of heritable DNA methylation variation and its phenotypic impact in natural populations to those made using near-isogenic populations derived from crosses between parents with experimentally induced DNA methylation differences. Finally, we question the role of the environment in inducing transgenerational epigenetic variation and briefly present theoretical models under which epimutability is expected to be selected for.


Assuntos
Metilação de DNA , Epigênese Genética , Plantas/genética , DNA de Plantas , Variação Genética , Genoma de Planta , Mutação , Reprodução/genética
5.
Plant J ; 105(4): 907-923, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179365

RESUMO

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Assuntos
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análise , Mapeamento Cromossômico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tirosina/metabolismo , Vitamina E/metabolismo
6.
J Exp Bot ; 73(12): 4022-4033, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35394503

RESUMO

Melon (Cucumis melo) has emerged as an alternative model to tomato for studying fruit ripening due to the coexistence of climacteric and non-climacteric varieties. Previous characterization of a major quantitative trait locus (QTL), ETHQV8.1, that is able to trigger climacteric ripening in a non-climacteric background resulted in the identification of a negative regulator of ripening CTR1-like (MELO3C024518) and a putative DNA demethylase ROS1 (MELO3C024516) that is the orthologue of DML2, a DNA demethylase that regulates fruit ripening in tomato. To understand the role of these genes in climacteric ripening, in this study we generated homozygous CRISPR knockout mutants of CTR1-like and ROS1 in a climacteric genetic background. The climacteric behavior was altered in both loss-of-function mutants in two growing seasons with an earlier ethylene production profile being observed compared to the climacteric wild type, suggesting a role of both genes in climacteric ripening in melon. Single-cytosine methylome analyses of the ROS1-knockout mutant revealed changes in DNA methylation in the promoter regions of the key ripening genes such as ACS1, ETR1, and ACO1, and in transcription factors associated with ripening including NAC-NOR, RIN, and CNR, suggesting the importance of ROS1-mediated DNA demethylation for triggering fruit ripening in melon.


Assuntos
Cucurbitaceae , Solanum lycopersicum , Sistemas CRISPR-Cas , Cucurbitaceae/genética , Epigênese Genética , Etilenos , Frutas/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
7.
J Exp Bot ; 71(12): 3588-3602, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32166321

RESUMO

There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.


Assuntos
Arabidopsis , Arabidopsis/genética , Metilação de DNA , Secas , Epigênese Genética , Expressão Gênica , Fenótipo
8.
Plant Cell Physiol ; 59(11): 2188-2203, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239816

RESUMO

Tocopherols are non-polar compounds synthesized in the plastids, which function as major antioxidants of the plant cells and are essential in the human diet. Both the intermediates and final products of the tocopherol biosynthetic pathway must cross plastid membranes to reach their sites of action. So far, no protein with tocopherol binding activity has been reported in plants. Here, we demonstrated that the tomato SlTBP protein is targeted to chloroplasts and able to bind α-tocopherol. SlTBP-knockdown tomato plants exhibited reduced levels of tocopherol in both leaves and fruits. Several tocopherol deficiency phenotypes were apparent in the transgenic lines, such as alterations in photosynthetic parameters, dramatic distortion of thylakoid membranes and significant variations in the lipid profile. These results, along with the altered expression of genes related to photosynthesis, and tetrapyrrole, lipid, isoprenoid, inositol/phosphoinositide and redox metabolism, suggest that SlTBP may act in conducting tocopherol (or its biosynthetic intermediates) between the plastid compartments and/or at the interface between chloroplast and endoplasmic reticulum membranes, affecting interorganellar lipid metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , alfa-Tocoferol/metabolismo , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Plastídeos/metabolismo
9.
Plant J ; 77(5): 676-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24372694

RESUMO

Limitations in our understanding about the mechanisms that underlie source-sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related-protein (named as SPA; sugar partition-affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA-RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source-sink relationships by affecting the rate of carbon translocation to fruits.


Assuntos
Metabolismo dos Carboidratos , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Inativação Gênica , Hexoses/metabolismo , Fosfoglucomutase/metabolismo , Fosfotransferases/metabolismo , Fotossíntese , Filogenia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Trioses/metabolismo , beta-Frutofuranosidase/metabolismo
10.
BMC Bioinformatics ; 15: 377, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408240

RESUMO

BACKGROUND: Transposable elements (TEs) are DNA sequences that are able to move from their location in the genome by cutting or copying themselves to another locus. As such, they are increasingly recognized as impacting all aspects of genome function. With the dramatic reduction in cost of DNA sequencing, it is now possible to resequence whole genomes in order to systematically characterize novel TE mobilization in a particular individual. However, this task is made difficult by the inherently repetitive nature of TE sequences, which in some eukaryotes compose over half of the genome sequence. Currently, only a few software tools dedicated to the detection of TE mobilization using next-generation-sequencing are described in the literature. They often target specific TEs for which annotation is available, and are only able to identify families of closely related TEs, rather than individual elements. RESULTS: We present TE-Tracker, a general and accurate computational method for the de-novo detection of germ line TE mobilization from re-sequenced genomes, as well as the identification of both their source and destination sequences. We compare our method with the two classes of existing software: specialized TE-detection tools and generic structural variant (SV) detection tools. We show that TE-Tracker, while working independently of any prior annotation, bridges the gap between these two approaches in terms of detection power. Indeed, its positive predictive value (PPV) is comparable to that of dedicated TE software while its sensitivity is typical of a generic SV detection tool. TE-Tracker demonstrates the benefit of adopting an annotation-independent, de novo approach for the detection of TE mobilization events. We use TE-Tracker to provide a comprehensive view of transposition events induced by loss of DNA methylation in Arabidopsis. TE-Tracker is freely available at http://www.genoscope.cns.fr/TE-Tracker . CONCLUSIONS: We show that TE-Tracker accurately detects both the source and destination of novel transposition events in re-sequenced genomes. Moreover, TE-Tracker is able to detect all potential donor sequences for a given insertion, and can identify the correct one among them. Furthermore, TE-Tracker produces significantly fewer false positives than common SV detection programs, thus greatly facilitating the detection and analysis of TE mobilization events.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Metilação de DNA , Humanos
11.
Plant Commun ; 5(5): 100824, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38268192

RESUMO

Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.


Assuntos
Arabidopsis , Resistência à Doença , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Resistência à Doença/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Metilação de DNA , Plasmodioforídeos/fisiologia , Locos de Características Quantitativas/genética , Proteínas de Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Alelos
12.
Nat Commun ; 15(1): 4877, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849342

RESUMO

In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.


Assuntos
Elementos de DNA Transponíveis , Etilenos , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Elementos de DNA Transponíveis/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Transdução de Sinais/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Mutação
13.
Plant Mol Biol ; 81(3): 309-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247837

RESUMO

Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Tocoferóis/metabolismo , Vias Biossintéticas , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Variação Genética , Genótipo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Fotossíntese , Pigmentos Biológicos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Tocoferóis/análise , Transferases/genética , Transferases/metabolismo , Vitamina E/análise , Vitamina E/metabolismo
14.
Curr Opin Genet Dev ; 78: 102018, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36525825

RESUMO

DNA methylation is a major epigenetic mark involved in the silencing of genes and transposable elements (TEs). DNA methylation varies significantly across the plant life cycle, but is efficiently reinforced during reproduction, ensuring stable silencing of TEs. Plants are remarkably flexible in their mode of reproduction and numerous species, including crops, can propagate asexually, skipping one or more of these critical reinforcement steps. In this review, we summarize recent advances in the characterization of DNA methylation inheritance in sexual and asexual plants. We argue that because most epigenetic reinforcement appears to occur during seed formation, methylomes of asexual seeds should resemble that of their sexual counterparts. Conversely, clonally propagated plants are expected to be hypomethylated and undergo frequent stochastic epigenetic changes. Last, we provide insights on how the use of nonmodel organisms will advance our understanding of epigenetic inheritance in plants.


Assuntos
Metilação de DNA , Epigênese Genética , Metilação de DNA/genética , Epigênese Genética/genética , Plantas/genética , Reprodução/genética , Sementes/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas/genética
15.
J Cell Biochem ; 113(7): 2319-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22345078

RESUMO

Rac1b is an alternatively spliced isoform of the small GTPase Rac1 that includes the 57-nucleotide exon 3b. Rac1b was originally identified through its over-expression in breast and colorectal cancer cells, and has subsequently been implicated as a key player in a number of different oncogenic signaling pathways, including tumorigenic transformation of mammary epithelial cells exposed to matrix metalloproteinase-3 (MMP-3). Although many of the cellular consequences of Rac1b activity have been recently described, the molecular mechanism by which MMP-3 treatment leads to Rac1b induction has not been defined. Here we use proteomic methods to identify heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as a factor involved in Rac1 splicing regulation. We find that hnRNP A1 binds to Rac1 exon 3b in mouse mammary epithelial cells, repressing its inclusion into mature mRNA. We also find that exposure of cells to MMP-3 leads to release of hnRNP A1 from exon 3b and the consequent generation of Rac1b. Finally, we analyze normal breast tissue and breast cancer biopsies, and identify an inverse correlation between expression of hnRNP A1 and Rac1b, suggesting the existence of this regulatory axis in vivo. These results provide new insights on how extracellular signals regulate alternative splicing, contributing to cellular transformation and development of breast cancer.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células Epiteliais , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Glândulas Mamárias Animais , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas rac1 de Ligação ao GTP
16.
Plant Physiol ; 156(3): 1278-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531899

RESUMO

Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of "sectoring" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.


Assuntos
Arabidopsis/genética , Frutas/crescimento & desenvolvimento , Inativação Gênica , Genômica/métodos , Proteínas de Fluorescência Verde/genética , Vírus de Plantas/metabolismo , Solanum lycopersicum/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Frutas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Oxirredutases/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Análise de Componente Principal , Transgenes/genética
17.
Genome Biol ; 23(1): 181, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038910

RESUMO

BACKGROUND: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS: Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA/metabolismo , Metilação de DNA , Histonas/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Plantas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
J Exp Bot ; 62(11): 3781-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21527625

RESUMO

Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, ß, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.


Assuntos
Proteínas de Plantas/genética , Locos de Características Quantitativas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Vitamina E/biossíntese , Clonagem Molecular , DNA Complementar , Frutas/química , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Solanum lycopersicum/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Seleção Genética , Alinhamento de Sequência , Especificidade da Espécie , Vitamina E/genética
19.
Curr Opin Plant Biol ; 61: 102043, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932785

RESUMO

Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Epigênese Genética , Genômica
20.
Methods Mol Biol ; 2250: 157-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900602

RESUMO

Transposable elements (TEs) are powerful generators of major-effect mutations, most of which are deleterious at the species level and maintained at very low frequencies within populations. As reference genomes can only capture a minor fraction of such variants, methods were developed to detect TE insertion polymorphisms (TIPs) in non-reference genomes from the short-read sequencing data that are becoming increasingly available. We present here a bioinformatic framework combining an improved version of the SPLITREADER and TEPID pipelines to detect non-reference TE presence and reference TE absence variants, respectively. We benchmark our method on ten non-reference Arabidopsis thaliana genomes and demonstrate its high specificity and sensitivity in the detection of TIPs between genomes.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Polimorfismo Genético , Algoritmos , Genoma de Planta , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA