Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(22): 15941-15952, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36264842

RESUMO

Incomplete mineralization of antibiotics in biological sludge systems poses a risk to the environment. In this study, the toxicity associated with ciprofloxacin (CIP) biodegradation in activated sludge (AS), anaerobic methanogenic sludge (AnMS), and sulfur-mediated sludge (SmS) systems was examined via long-term bioreactor tests and a series of bioassays. The AS and AnMS systems were susceptible to CIP and its biotransformation products (TPs) and exhibited performance deterioration, while the SmS system exhibited high tolerance against the toxicity of CIP and its TPs along with excellent pollutant removal. Up to 14 TPs were formed via piperazinyl substituent cleavage, defluorination, decarboxylation, acetylation, and hydroxylation reactions in AS, AnMS, and SmS systems. Biodegradation of CIP in the AS, AnMS, and SmS systems, however, could not completely eliminate its toxicity as evident from the inhibition of Vibrio fischeri luminescence along with Escherichia coli K12 and Bacillus subtilis growth. The anaerobic systems (AnMS and SmS) were more effective than the aerobic AS system at CIP biodegradation, significantly reducing the antibacterial activity of CIP and its TPs in the aqueous phase. In addition, the quantitative structure-activity relationship analysis indicated that the TPs produced via decarboxylation and hydroxylation (TP2 and TP4) as well as by cleavage of piperazine (TP12, TP13, and TP14) exhibited higher toxicity than CIP. The findings of this study provide insights into the toxicity and possible risks associated with CIP biodegradation in biological wastewater treatment.


Assuntos
Ciprofloxacina , Purificação da Água , Ciprofloxacina/análise , Esgotos/microbiologia , Biodegradação Ambiental , Antibacterianos
2.
Water Res ; 266: 122385, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39255566

RESUMO

The presence of antibiotics in wastewater poses significant threat to our ecosystems and health. Traditional biological wastewater treatment technologies have several limitations in treating antibiotic-contaminated wastewaters, such as low removal efficiency and poor process resilience. Here, a novel electrochemical-coupled sulfur-mediated biological system was developed for treating wastewater co-contaminated with several antibiotics (e.g., ciprofloxacin (CIP), sulfamethoxazole (SMX), chloramphenicol (CAP)). Superior removal of CIP, SMX, and CAP with efficiencies ranging from 40.6 ± 2.6 % to 98.4 ± 1.6 % was achieved at high concentrations of 1000 µg/L in the electrochemical-coupled sulfur-mediated biological system, whereas the efficiencies ranged from 30.4 ± 2.3 % to 98.2 ± 1.4 % in the control system (without electrochemical stimulation). The biodegradation rates of CIP, SMX, and CAP increased by 1.5∼1.9-folds under electrochemical stimulation compared to the control. The insights into the role of electrochemical stimulation for multiple antibiotics biodegradation enhancement was elucidated through a combination of metagenomic and electrochemical analyses. Results showed that sustained electrochemical stimulation significantly enriched the sulfate-reducing and electroactive bacteria (e.g., Desulfobulbus, Longilinea, and Lentimicrobiumin on biocathode and Geobactor on bioanode), and boosted the secretion of electron transport mediators (e.g., cytochrome c and extracellular polymeric substances), which facilitated the microbial extracellular electron transfer processes and subsequent antibiotics removal in the sulfur-mediated biological system. Furthermore, under electrochemical stimulation, functional genes associated with sulfur and carbon metabolism and electron transfer were more abundant, and the microbial metabolic processes were enhanced, contributing to antibiotics biodegradation. Our study for the first time demonstrated that the synergistic effects of electrochemical-coupled sulfur-mediated biological system was capable of overcoming the limitations of conventional biological treatment processes. This study shed light on the mechanism of enhanced antibiotics biodegradation via electrochemical stimulation, which could be employed in sulfur-mediated bioprocess for treating antibiotic-contaminated wastewaters.


Assuntos
Antibacterianos , Biodegradação Ambiental , Enxofre , Águas Residuárias , Águas Residuárias/química , Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas
3.
J Hazard Mater ; 465: 133394, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211522

RESUMO

Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.


Assuntos
Antibacterianos , Cefradina , Anaerobiose , Escherichia coli/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Metano/metabolismo , Reatores Biológicos
4.
Water Res ; 246: 120753, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871376

RESUMO

Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure. SMX can be effectively biodegraded by the cleavage and rearrangement of the isoxazole ring, hydrogenation and hydroxylation reactions in sulfur-mediated biological wastewater system. These biodegradation pathways effectively reduced the acute toxicity, antibacterial activity, and ecotoxicities of SMX and its biotransformation products (TPs) in the effluent of the sulfur-mediated biological system. The TPs produced via hydrogenation (TP1), hydroxylation, and isoxazole ring cleavage (TP3, TP4, TP5, TP8, and TP9) exhibited lower toxicity than SMX. Under SMX stress, although the abundance of sulfonamide resistance genes increased, the total abundance of ARGs decreased due to the extrusion of some intracellular SMX by the efflux pump genes and the inactivation of some SMX through the biodegradation process. Efflux pump and inactivation, as the main resistance mechanisms of antibiotics in the sulfur-mediated biological system, play a crucial role in microbial self-defense. The findings of this study demonstrate the great potential of the sulfur-mediated biological system in SMX removal, detoxication, and ARGs environmental risk reduction.


Assuntos
Sulfametoxazol , Purificação da Água , Sulfametoxazol/toxicidade , Águas Residuárias , Antibacterianos , Biodegradação Ambiental , Isoxazóis
5.
Water Res ; 223: 119038, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067605

RESUMO

Microplastics are ubiquitous in estuaries, coasts, sewage and wastewater treatment plants (WWTPs), which could arouse unexpected effects on critical microbial processes in wastewater treatment. In this study, polyethylene terephthalate microplastics (PET-MPs) were selected to investigate the mechanism of its influence on the performance of sulfur-mediated biological process from the perspective of microbial metabolic activity, electron transfer capacity and microbial community. The results indicated that the exposure of 50 particles/L PET-MPs improved the chemical oxygen demand (COD) and sulfate removal efficiencies by 6.6 ± 0.5% and 4.5 ± 0.3%, respectively, due to the stimulation of microbial metabolic activity and the enrichment of sulfate-reducing bacteria (SRB) species, such as Desulfobacter. In addition, we found that the PET-MPs promoted Cytochrome C (Cyt C) production and improved the direct electron transfer (DET) capacity mediated by Cyt C. The long-term presence of PET-MPs stimulated the secretion of extracellular polymeric substance (EPS), especially the proteins and humic substances, which have been verified to be electroactive polymers to act as electron shuttles to promote the interspecies electron transfer pathway in sulfur-mediated biological process. Meanwhile, the transformation products (bis-(2-hydroxyethyl) terephthalate (BHET) and Mono (2-hydroxyethyl) terephthalic acid (MHET) of PET-MPs were detected in sulfur-mediated biological process. These findings indicate that the sulfur-mediated biological process has good adaptability to the toxicity of PET-MPs, which strengthens a deeper understanding of the dual function of microplastics in WWTPs.


Assuntos
Microbiota , Poluentes Químicos da Água , Citocromos c , Elétrons , Matriz Extracelular de Substâncias Poliméricas , Substâncias Húmicas , Microplásticos , Plásticos , Polietileno , Polietilenotereftalatos , Esgotos , Sulfatos , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA