Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 10(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455797

RESUMO

The present study examines the impact of the policies against the proliferation of SARS-CoV-2 on outpatient facilities through a direct comparison of the key performance indicators measured in an ordinary and pandemic scenario. The subject of the analysis is a diagnostic imaging department of a Smart Clinic (SC) of Gruppo San Donato (GSD). The operations are virtually replicated through a Discrete-Event Simulation (DES) software called FlexSim Healthcare. Operational and productivity indicators are defined and quantified. As hypothesized, anti-contagious practices affect the normal execution of medical activities and their performance, resulting in an unpleasant scenario compared to the baseline one. A reduction in the number of diagnoses by 19% and a decrease in the utilization rate of the diagnostic machine by 21% are shown. Consequently, the development of strategies that restore balance and improve the execution of outpatient activities in a pandemic setting is necessary.

2.
Micromachines (Basel) ; 12(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200342

RESUMO

Artificial Neural Network (ANN), together with a Particle Swarm Optimization (PSO) and Finite Element Model (FEM), was used to forecast the process performances for the Micro Electrical Discharge Machining (micro-EDM) drilling process. The integrated ANN-PSO methodology has a double direction functionality, responding to different industrial needs. It allows to optimize the process parameters as a function of the required performances and, at the same time, it allows to forecast the process performances fixing the process parameters. The functionality is strictly related to the input and/or output fixed in the model. The FEM model was based on the capacity of modeling the removal process through the mesh element deletion, simulating electrical discharges through a proper heat-flux. This paper compares these prevision models, relating the expected results with the experimental data. In general, the results show that the integrated ANN-PSO methodology is more accurate in the performance previsions. Furthermore, the ANN-PSO model is faster and easier to apply, but it requires a large amount of historical data for the ANN training. On the contrary, the FEM is more complex to set up, since many physical and thermal characteristics of the materials are necessary, and a great deal of time is required for a single simulation.

3.
Micromachines (Basel) ; 11(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114767

RESUMO

The effects of different reinforcement shapes on stability and repeatability of micro electrical discharge machining were experimentally investigated for ultra-high-temperature ceramics based on zirconium diboride (ZrB2) doped by SiC. Two reinforcement shapes, namely SiC short fibers and SiC whiskers were selected in accordance with their potential effects on mechanical properties and oxidation performance. Specific sets of process parameters were defined minimizing the short circuits in order to identify the best combination for different pulse types. The obtained results were then correlated with the energy per single discharge and the discharges occurred for all the combinations of material and pulse type. The pulse characterization was performed by recording pulses data by means of an oscilloscope, while the surface characteristics were defined by a 3D reconstruction. The results indicated how reinforcement shapes affect the energy efficiency of the process and change the surface aspect.

4.
Materials (Basel) ; 12(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783520

RESUMO

Several types of advanced materials have been developed to be applied in many industrial application fields to satisfy the high performance required. Despite this, research and development of process suited to machine are still limited. Due to the high mechanical properties, advanced materials are often considered as difficult to cut. For this reason, EDM (Electrical Discharge Machining) can be defined as a good option for the machining of micro components made of difficult to cut electrically conductive materials. This paper presents an investigation on the applicability of the EDM process to machine ZrB2 reinforced by SiC fibers, with assessment of process performance and energy efficiency. Different fractions of the additive SiC fibers were taken into account to evaluate the stability and repeatability of the process. Circular pocket features were machined by using a micro-EDM machine and the results from different process parameters combinations were analyzed with respect to material removal, electrode wear and cavity surface quality. Discharges data were collected and characterized to define the actual values of process parameters (peak current, pulse duration and energy per discharge). The characteristics of the pulses were used to evaluate the machinability and to investigate the energy efficiency of the process. The main process performance indicators were calculated as a function of the number of occurred discharges and the energy of a single discharge. The results show interesting aspects related to the process from both the performances and the removal mechanism point of view.

5.
Micromachines (Basel) ; 8(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30400443

RESUMO

The present work deals with the execution of through micro-holes on tungsten carbide plates using a micro-electrical discharge machining (micro-EDM) machine. The experiments were carried out by varying peak current, voltage and frequency in order to achieve suitable technology windows. Tubular electrodes, made of two different materials (tungsten carbide and brass), were used. The investigation focuses on the influence of variable process parameters on the process performances and their optimization. The performance indicators taken into account were Material Removal Rate (MRR) and Tool Wear Ratio (TWR). A general model based on a cost index was defined for the process performances optimization and the optimal conditions were identified through the minimization of the objective function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA