Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
RNA Biol ; 21(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39049162

RESUMO

Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.


Assuntos
DNA Ribossômico , Instabilidade Genômica , Mutação , RNA Polimerase I , Processamento Pós-Transcricional do RNA , RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase I/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição
2.
Mol Cell ; 53(4): 672-81, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24486021

RESUMO

Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.


Assuntos
Imunoprecipitação da Cromatina/métodos , Regulação da Expressão Gênica , Elementos Isolantes/fisiologia , RNA Polimerase II/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Olho/metabolismo , Redes Reguladoras de Genes , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
3.
PLoS Genet ; 14(7): e1007541, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059501

RESUMO

DNA replication stress (DRS) leads to the accumulation of stalled DNA replication forks leaving a fraction of genomic loci incompletely replicated, a source of chromosomal rearrangements during their partition in mitosis. MUS81 is known to limit the occurrence of chromosomal instability by processing these unresolved loci during mitosis. Here, we unveil that the endonucleases ARTEMIS and XPF-ERCC1 can also induce stalled DNA replication forks cleavage through non-epistatic pathways all along S and G2 phases of the cell cycle. We also showed that both nucleases are recruited to chromatin to promote replication fork restart. Finally, we found that rapid chromosomal breakage controlled by ARTEMIS and XPF is important to prevent mitotic segregation defects. Collectively, these results reveal that Rapid Replication Fork Breakage (RRFB) mediated by ARTEMIS and XPF in response to DRS contributes to DNA replication efficiency and limit chromosomal instability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Fase G2/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Linhagem Celular Tumoral , Segregação de Cromossomos/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos , Instabilidade Genômica/fisiologia , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , RNA Interferente Pequeno/metabolismo
4.
EMBO J ; 33(14): 1599-613, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24916307

RESUMO

Chromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites. Biochemical purification identifies the H3K36 histone methyltransferase NSD/dMes-4 as a novel IBP cofactor, which specifically co-regulates the chromatin accessibility of hundreds of genes flanked by dCTCF/Beaf32. NSD/dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-dependent H3K36 trimethylation, nucleosome positioning, and RNA splicing. Our results unveil a model for how IBPs regulate nucleosome dynamics and gene expression through NSD/dMes-4, which may regulate H3K27me3 spreading. Our data uncover how IBPs dynamically regulate chromatin organization depending on distinct cofactors.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Elementos Isolantes/genética , Modelos Biológicos , Nucleossomos/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Análise de Componente Principal , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Técnicas do Sistema de Duplo-Híbrido
5.
Haematologica ; 103(6): 1038-1046, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567785

RESUMO

Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients' lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients' samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).


Assuntos
DNA Polimerase Dirigida por DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Camundongos , Mutação , Prognóstico , Modelos de Riscos Proporcionais , Vidarabina/farmacologia , Vidarabina/uso terapêutico
6.
Noncoding RNA ; 7(3)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287362

RESUMO

Pervasive transcription is widespread in eukaryotes, generating large families of non-coding RNAs. Such pervasive transcription is a key player in the regulatory pathways controlling chromatin state and gene expression. Here, we describe long non-coding RNAs generated from the ribosomal RNA gene promoter called UPStream-initiating transcripts (UPS). In yeast, rDNA genes are organized in tandem repeats in at least two different chromatin states, either transcribed and largely depleted of nucleosomes (open) or assembled in regular arrays of nucleosomes (closed). The production of UPS transcripts by RNA Polymerase II from endogenous rDNA genes was initially documented in mutants defective for rRNA production by RNA polymerase I. We show here that UPS are produced in wild-type cells from closed rDNA genes but are hidden within the enormous production of rRNA. UPS levels are increased when rDNA chromatin states are modified at high temperatures or entering/leaving quiescence. We discuss their role in the regulation of rDNA chromatin states and rRNA production.

7.
Cell Rep ; 28(11): 2851-2865.e4, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509747

RESUMO

Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.


Assuntos
Diferenciação Celular/genética , Dano ao DNA/genética , Regulação Leucêmica da Expressão Gênica/genética , Neoplasias Hematológicas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Apoptose/genética , Medula Óssea/metabolismo , Medula Óssea/patologia , Proliferação de Células/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Camundongos , Camundongos Knockout , Proteínas de Manutenção de Minicromossomo/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/genética , Esplenomegalia/genética , Esplenomegalia/metabolismo , Proteína Supressora de Tumor p53/genética
8.
Mutat Res ; 643(1-2): 41-7, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18616953

RESUMO

Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H2O2, HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/genética , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Adolescente , Adulto , Células Cultivadas , Criança , Dano ao DNA/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Radiação Ionizante , Síndrome de Rothmund-Thomson/metabolismo , Irmãos
9.
Cancer Res ; 64(10): 3559-65, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15150112

RESUMO

Altered sonic hedgehog (SHH) signaling is crucial in the development of basal cell carcinomas (BCC), the most common human cancer. Mutations in SHH signal transducers, PATCHED and SMOOTHENED, have already been identified, but SHH mutations are extremely rare; only 1 was detected in 74 sporadic BCCs. We present data showing unique SHH mutations in BCCs from repair-deficient, skin cancer-prone xeroderma pigmentosum (XP) patients, which are characterized by high levels of UV-specific mutations in key genes involved in skin carcinogenesis, including PATCHED and SMOOTHENED. Thus, 6 UV-specific SHH mutations were detected in 5 of 33 XP BCCs. These missense SHH alterations are not activating mutations for its postulated proto-oncogene function, as the mutant SHH proteins do not show transforming activity and induce differentiation or stimulate proliferation to the same level as the wild-type protein. Structural modeling studies of the 4 proteins altered at the surface residues, G57S, G64K, D147N, and R155C, show that they do not effect the protein conformation. Interestingly, they are all located on one face of the compact SHH protein suggesting that they may have altered affinity for different partners, which may be important in altering other functions. Additional functional analysis of the SHH mutations found in vivo in XP BCCs will help shed light on the role of SHH in skin carcinogenesis. In conclusion, we report for the first time, significant levels of SHH mutations found only in XP BCCs and none in squamous cell carcinomas, indicating their importance in the specific development of BCCs.


Assuntos
Carcinoma Basocelular/genética , Mutação , Neoplasias Cutâneas/genética , Transativadores/genética , Xeroderma Pigmentoso/genética , Animais , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas Hedgehog , Humanos , Camundongos , Camundongos Endogâmicos C3H , Modelos Moleculares , Células NIH 3T3 , Proto-Oncogene Mas , Ratos , Ratos Endogâmicos F344 , Neoplasias Cutâneas/patologia , Xeroderma Pigmentoso/patologia
10.
Carcinogenesis ; 28(3): 724-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17065198

RESUMO

Immunosuppressed renal transplant recipients (RTRs) are predisposed to non-melanoma skin cancers (NMSCs), predominantly squamous cell carcinomas (SCCs). We have analyzed skin lesions from RTRs with aggressive tumors for p53 gene modifications, the presence of Human Papillomas Virus (HPV) DNA in relation to the p53 codon 72 genotype and polymorphisms of the XPD repair gene. We detected 24 p53 mutations in 15/25 (60%) NMSCs, 1 deletion and 23 base substitutions, the majority (78%) being UV-specific C to T transitions at bipyrimidine sites. Importantly, 35% (6/17) are tandem mutations, including 4 UV signature CC to TT transitions possibly linked to modulated DNA repair caused by the immunosuppressive drug cyclosporin A (CsA). We found 8 p53 mutations in 7/17 (41%) precancerous actinic keratosis (AK), suggesting that p53 mutations are early events in RTR skin carcinogenesis. Immunohistochemical analysis shows a good correlation between p53 accumulation and mutations. HPV DNA was detected in 78% of skin lesions (60% Basal Cell Carcinomas, 82%AK and 79% SCCs). Thus, immunosuppression has increased the risk of infections by HPVs, predominantly epidermodysplasia verruciformis, speculated to play a role in skin cancer development. No association is found between HPV status and p53 mutation. Moreover, p53 codon 72 or frequencies of three XPD genotypes of RTRs are comparable with control populations. The p53 mutation spectrum, presenting a high level of CC to TT mutations, shows that the UV component of sunlight is the major risk factor and modulated DNA repair by immunosuppressive drug treatment may be significant in the skin carcinogenesis of RTRs.


Assuntos
Carcinoma de Células Escamosas/epidemiologia , Genes p53 , Terapia de Imunossupressão/efeitos adversos , Transplante de Rim/imunologia , Polimorfismo Genético , Neoplasias Cutâneas/epidemiologia , Raios Ultravioleta , Carcinoma de Células Escamosas/genética , Códon , DNA Viral/genética , Genótipo , Humanos , Fatores de Risco , Neoplasias Cutâneas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA