RESUMO
SIGNIFICANCE: Screening for ocular anomalies using fundus photography is key to prevent vision impairment and blindness. With the growing and aging population, automated algorithms that can triage fundus photographs and provide instant referral decisions are relevant to scale-up screening and face the shortage of ophthalmic expertise. PURPOSE: This study aimed to develop a deep learning algorithm that detects any ocular anomaly in fundus photographs and to evaluate this algorithm for "normal versus anomalous" eye examination classification in the diabetic and general populations. METHODS: The deep learning algorithm was developed and evaluated in two populations: the diabetic and general populations. Our patient cohorts consist of 37,129 diabetic patients from the OPHDIAT diabetic retinopathy screening network in Paris, France, and 7356 general patients from the OphtaMaine private screening network, in Le Mans, France. Each data set was divided into a development subset and a test subset of more than 4000 examinations each. For ophthalmologist/algorithm comparison, a subset of 2014 examinations from the OphtaMaine test subset was labeled by a second ophthalmologist. First, the algorithm was trained on the OPHDIAT development subset. Then, it was fine-tuned on the OphtaMaine development subset. RESULTS: On the OPHDIAT test subset, the area under the receiver operating characteristic curve for normal versus anomalous classification was 0.9592. On the OphtaMaine test subset, the area under the receiver operating characteristic curve was 0.8347 before fine-tuning and 0.9108 after fine-tuning. On the ophthalmologist/algorithm comparison subset, the second ophthalmologist achieved a specificity of 0.8648 and a sensitivity of 0.6682. For the same specificity, the fine-tuned algorithm achieved a sensitivity of 0.8248. CONCLUSIONS: The proposed algorithm compares favorably with human performance for normal versus anomalous eye examination classification using fundus photography. Artificial intelligence, which previously targeted a few retinal pathologies, can be used to screen for ocular anomalies comprehensively.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Oftalmopatias , Idoso , Algoritmos , Inteligência Artificial , Retinopatia Diabética/diagnóstico , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Humanos , Masculino , Programas de Rastreamento , Fotografação , Sensibilidade e EspecificidadeRESUMO
Dry eye disease (DED) is a common eye condition worldwide and a primary reason for visits to the ophthalmologist. DED diagnosis is performed through a combination of tests, some of which are unfortunately invasive, non-reproducible and lack accuracy. The following review describes methods that diagnose and measure the extent of eye dryness, enabling clinicians to quantify its severity. Our aim with this paper is to review classical methods as well as those that incorporate automation. For only four ways of quantifying DED, we take a deeper look into what main elements can benefit from automation and the different ways studies have incorporated it. Like numerous medical fields, Artificial Intelligence (AI) appears to be the path towards quality DED diagnosis. This review categorises diagnostic methods into the following: classical, semi-automated and promising AI-based automated methods.
Assuntos
Inteligência Artificial , Síndromes do Olho Seco , Automação , Síndromes do Olho Seco/diagnóstico , HumanosRESUMO
BACKGROUND AND OBJECTIVES: To develop and test VMseg, a new image processing algorithm performing automatic segmentation of retinal non-perfusion in widefield OCT-Angiography images, in order to estimate the non-perfusion index in diabetic patients. METHODS: We included diabetic patients with severe non-proliferative or proliferative diabetic retinopathy. We acquired images using the PlexElite 9000 OCT-A device with a photomontage of 5 images of size 12 x 12 mm. We then developed VMseg, a Python algorithm for non-perfusion detection, which binarizes a variance map calculated through convolution and morphological operations. We used 70% of our data set (development set) to fine-tune the algorithm parameters (convolution and morphological parameters, binarization thresholds) and evaluated the algorithm performance on the remaining 30% (test set). The obtained automatic segmentations were compared to a ground truth corresponding to manual segmentation from a retina expert and the inference processing time was estimated. RESULTS: We included 51 eyes of 30 patients (27 severe non-proliferative, 24 proliferative diabetic retinopathy). Using the optimal parameters found on the development set to tune the algorithm, the mean dice for the test set was 0.683 (sd = 0.175). We found a higher dice coefficient for images with a higher area of retinal non-perfusion (rs = 0.722, p < 10-4). There was a strong correlation (rs = 0.877, p < 10-4) between VMseg estimated non-perfusion indexes and indexes estimated using the ground truth segmentation. The Bland-Altman plot revealed that 3 eyes (5.9%) were significantly under-segmented by VMseg. CONCLUSION: We developed VMseg, an automatic algorithm for retinal non-perfusion segmentation on 12 x 12 mm OCT-A widefield photomontages. This simple algorithm was fast at inference time, segmented images in full-resolution and for the OCT-A format, was accurate enough for automatic estimation of retinal non-perfusion index in diabetic patients with diabetic retinopathy.
Assuntos
Algoritmos , Retinopatia Diabética , Tomografia de Coerência Óptica , Humanos , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Processamento de Imagem Assistida por Computador/métodos , Vasos Retinianos/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/patologia , Angiografia/métodos , Angiofluoresceinografia/métodosRESUMO
Over 700,000 people die by suicide annually. Collecting longitudinal fine-grained data about at-risk individuals, as they occur in the real world, can enhance our understanding of the temporal dynamics of suicide risk, leading to better identification of those in need of immediate intervention. Self-assessment questionnaires were collected over time from 89 at-risk individuals using the EMMA smartphone application. An artificial intelligence (AI) model was trained to assess current level of suicidal ideation (SI), an early indicator of the suicide risk, and to predict its progression in the following days. A key challenge was the unevenly spaced and incomplete nature of the time series data. To address this, the AI was built on a missing value imputation algorithm. The AI successfully distinguished high SI levels from low SI levels both on the current day (AUC = 0.804, F1 = 0.625, MCC = 0.459) and three days in advance (AUC = 0.769, F1 = 0.576, MCC = 0.386). Besides past SI levels, the most significant questions were related to psychological pain, well-being, agitation, emotional tension, and protective factors such as contacts with relatives and leisure activities. This represents a promising step towards early AI-based suicide risk prediction using a smartphone application.
Assuntos
Smartphone , Ideação Suicida , Prevenção do Suicídio , Humanos , Projetos Piloto , Masculino , Feminino , Inquéritos e Questionários , Adulto , Aplicativos Móveis , Inteligência Artificial , Adulto Jovem , Pessoa de Meia-Idade , Medição de Risco/métodosRESUMO
Numerous Deep Learning (DL) classification models have been developed for a large spectrum of medical image analysis applications, which promises to reshape various facets of medical practice. Despite early advances in DL model validation and implementation, which encourage healthcare institutions to adopt them, a fundamental questions remain: how can these models effectively handle domain shift? This question is crucial to limit DL models performance degradation. Medical data are dynamic and prone to domain shift, due to multiple factors. Two main shift types can occur over time: (1) covariate shift mainly arising due to updates to medical equipment and (2) concept shift caused by inter-grader variability. To mitigate the problem of domain shift, existing surveys mainly focus on domain adaptation techniques, with an emphasis on covariate shift. More generally, no work has reviewed the state-of-the-art solutions while focusing on the shift types. This paper aims to explore existing domain generalization methods for DL-based classification models through a systematic review of literature. It proposes a taxonomy based on the shift type they aim to solve. Papers were searched and gathered on Scopus till 10 April 2023, and after the eligibility screening and quality evaluation, 77 articles were identified. Exclusion criteria included: lack of methodological novelty (e.g., reviews, benchmarks), experiments conducted on a single mono-center dataset, or articles not written in English. The results of this paper show that learning based methods are emerging, for both shift types. Finally, we discuss future challenges, including the need for improved evaluation protocols and benchmarks, and envisioned future developments to achieve robust, generalized models for medical image classification.
RESUMO
INTRODUCTION: An important obstacle in the fight against diabetic retinopathy (DR) is the use of a classification system based on old imaging techniques and insufficient data to accurately predict its evolution. New imaging techniques generate new valuable data, but we lack an adapted classification based on these data. The main objective of the Evaluation Intelligente de la Rétinopathie Diabétique, Intelligent evaluation of DR (EviRed) project is to develop and validate a system assisting the ophthalmologist in decision-making during DR follow-up by improving the prediction of its evolution. METHODS AND ANALYSIS: A cohort of up to 5000 patients with diabetes will be recruited from 18 diabetology departments and 14 ophthalmology departments, in public or private hospitals in France and followed for an average of 2 years. Each year, systemic health data as well as ophthalmological data will be collected. Both eyes will be imaged by using different imaging modalities including widefield photography, optical coherence tomography (OCT) and OCT-angiography. The EviRed cohort will be divided into two groups: one group will be randomly selected in each stratum during the inclusion period to be representative of the general diabetic population. Their data will be used for validating the algorithms (validation cohort). The data for the remaining patients (training cohort) will be used to train the algorithms. ETHICS AND DISSEMINATION: The study protocol was approved by the French South-West and Overseas Ethics Committee 4 on 28 August 2020 (CPP2020-07-060b/2020-A01725-34/20.06.16.41433). Prior to the start of the study, each patient will provide a written informed consent documenting his or her agreement to participate in the clinical trial. Results of this research will be disseminated in peer-reviewed publications and conference presentations. The database will also be available for further study or development that could benefit patients. TRIAL REGISTRATION NUMBER: NCT04624737.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Masculino , Feminino , Retinopatia Diabética/diagnóstico por imagem , Inteligência Artificial , Estudos Prospectivos , Retina , AlgoritmosRESUMO
In the realm of ophthalmology, precise measurement of tear film break-up time (TBUT) plays a crucial role in diagnosing dry eye disease (DED). This study aims to introduce an automated approach utilizing artificial intelligence (AI) to mitigate subjectivity and enhance the reliability of TBUT measurement. We employed a dataset of 47 slit lamp videos for development, while a test dataset of 20 slit lamp videos was used for evaluating the proposed approach. The multistep approach for TBUT estimation involves the utilization of a Dual-Task Siamese Network for classifying video frames into tear film breakup or non-breakup categories. Subsequently, a postprocessing step incorporates a Gaussian filter to smooth the instant breakup/non-breakup predictions effectively. Applying a threshold to the smoothed predictions identifies the initiation of tear film breakup. Our proposed method demonstrates on the evaluation dataset a precise breakup/non-breakup classification of video frames, achieving an Area Under the Curve of 0.870. At the video level, we observed a strong Pearson correlation coefficient (r) of 0.81 between TBUT assessments conducted using our approach and the ground truth. These findings underscore the potential of AI-based approaches in quantifying TBUT, presenting a promising avenue for advancing diagnostic methodologies in ophthalmology.
Assuntos
Aprendizado Profundo , Síndromes do Olho Seco , Lágrimas , Síndromes do Olho Seco/diagnóstico , Humanos , Reprodutibilidade dos Testes , Gravação em VídeoRESUMO
Multimodal medical imaging plays a pivotal role in clinical diagnosis and research, as it combines information from various imaging modalities to provide a more comprehensive understanding of the underlying pathology. Recently, deep learning-based multimodal fusion techniques have emerged as powerful tools for improving medical image classification. This review offers a thorough analysis of the developments in deep learning-based multimodal fusion for medical classification tasks. We explore the complementary relationships among prevalent clinical modalities and outline three main fusion schemes for multimodal classification networks: input fusion, intermediate fusion (encompassing single-level fusion, hierarchical fusion, and attention-based fusion), and output fusion. By evaluating the performance of these fusion techniques, we provide insight into the suitability of different network architectures for various multimodal fusion scenarios and application domains. Furthermore, we delve into challenges related to network architecture selection, handling incomplete multimodal data management, and the potential limitations of multimodal fusion. Finally, we spotlight the promising future of Transformer-based multimodal fusion techniques and give recommendations for future research in this rapidly evolving field.
Assuntos
Aprendizado Profundo , Imagem Multimodal , Humanos , Imagem Multimodal/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Diabetic Retinopathy (DR), an ocular complication of diabetes, is a leading cause of blindness worldwide. Traditionally, DR is monitored using Color Fundus Photography (CFP), a widespread 2-D imaging modality. However, DR classifications based on CFP have poor predictive power, resulting in suboptimal DR management. Optical Coherence Tomography Angiography (OCTA) is a recent 3-D imaging modality offering enhanced structural and functional information (blood flow) with a wider field of view. This paper investigates automatic DR severity assessment using 3-D OCTA. A straightforward solution to this task is a 3-D neural network classifier. However, 3-D architectures have numerous parameters and typically require many training samples. A lighter solution consists in using 2-D neural network classifiers processing 2-D en-face (or frontal) projections and/or 2-D cross-sectional slices. Such an approach mimics the way ophthalmologists analyze OCTA acquisitions: (1) en-face flow maps are often used to detect avascular zones and neovascularization, and (2) cross-sectional slices are commonly analyzed to detect macular edemas, for instance. However, arbitrary data reduction or selection might result in information loss. Two complementary strategies are thus proposed to optimally summarize OCTA volumes with 2-D images: (1) a parametric en-face projection optimized through deep learning and (2) a cross-sectional slice selection process controlled through gradient-based attribution. The full summarization and DR classification pipeline is trained from end to end. The automatic 2-D summary can be displayed in a viewer or printed in a report to support the decision. We show that the proposed 2-D summarization and classification pipeline outperforms direct 3-D classification with the advantage of improved interpretability.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Angiofluoresceinografia/métodos , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos TransversaisRESUMO
In the last decades, many publicly available large fundus image datasets have been collected for diabetic retinopathy, glaucoma, and age-related macular degeneration, and a few other frequent pathologies. These publicly available datasets were used to develop a computer-aided disease diagnosis system by training deep learning models to detect these frequent pathologies. One challenge limiting the adoption of a such system by the ophthalmologist is, computer-aided disease diagnosis system ignores sight-threatening rare pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy and others that ophthalmologists currently detect. Aiming to advance the state-of-the-art in automatic ocular disease classification of frequent diseases along with the rare pathologies, a grand challenge on "Retinal Image Analysis for multi-Disease Detection" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2021). This paper, reports the challenge organization, dataset, top-performing participants solutions, evaluation measures, and results based on a new "Retinal Fundus Multi-disease Image Dataset" (RFMiD). There were two principal sub-challenges: disease screening (i.e. presence versus absence of pathology - a binary classification problem) and disease/pathology classification (a 28-class multi-label classification problem). It received a positive response from the scientific community with 74 submissions by individuals/teams that effectively entered in this challenge. The top-performing methodologies utilized a blend of data-preprocessing, data augmentation, pre-trained model, and model ensembling. This multi-disease (frequent and rare pathologies) detection will enable the development of generalizable models for screening the retina, unlike the previous efforts that focused on the detection of specific diseases.
RESUMO
Federated learning (FL) is a machine learning framework that allows remote clients to collaboratively learn a global model while keeping their training data localized. It has emerged as an effective tool to solve the problem of data privacy protection. In particular, in the medical field, it is gaining relevance for achieving collaborative learning while protecting sensitive data. In this work, we demonstrate the feasibility of FL in the development of a deep learning model for screening diabetic retinopathy (DR) in fundus photographs. To this end, we conduct a simulated FL framework using nearly 700,000 fundus photographs collected from OPHDIAT, a French multi-center screening network for detecting DR. We develop two FL algorithms: 1) a cross-center FL algorithm using data distributed across the OPHDIAT centers and 2) a cross-grader FL algorithm using data distributed across the OPHDIAT graders. We explore and assess different FL strategies and compare them to a conventional learning algorithm, namely centralized learning (CL), where all the data is stored in a centralized repository. For the task of referable DR detection, our simulated FL algorithms achieved similar performance to CL, in terms of area under the ROC curve (AUC): AUC =0.9482 for CL, AUC = 0.9317 for cross-center FL and AUC = 0.9522 for cross-grader FL. Our work indicates that the FL algorithm is a viable and reliable framework that can be applied in a screening network.Clinical relevance- Given that data sharing is regarded as an essential component of modern medical research, achieving collaborative learning while protecting sensitive data is key.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Algoritmos , Fundo de Olho , Aprendizado de Máquina , Técnicas de Diagnóstico OftalmológicoRESUMO
Quantitative Gait Analysis (QGA) is considered as an objective measure of gait performance. In this study, we aim at designing an artificial intelligence that can efficiently predict the progression of gait quality using kinematic data obtained from QGA. For this purpose, a gait database collected from 734 patients with gait disorders is used. As the patient walks, kinematic data is collected during the gait session. This data is processed to generate the Gait Profile Score (GPS) for each gait cycle. Tracking potential GPS variations enables detecting changes in gait quality. In this regard, our work is driven by predicting such future variations. Two approaches were considered: signal-based and image-based. The signal-based one uses raw gait cycles, while the image-based one employs a two-dimensional Fast Fourier Transform (2D FFT) representation of gait cycles. Several architectures were developed, and the obtained Area Under the Curve (AUC) was above 0.72 for both approaches. To the best of our knowledge, our study is the first to apply neural networks for gait prediction tasks.
Assuntos
Inteligência Artificial , Análise da Marcha , Humanos , Análise da Marcha/métodos , Marcha , Redes Neurais de Computação , Análise de Fourier , Fenômenos BiomecânicosRESUMO
Optical coherence tomography angiography (OCTA) can deliver enhanced diagnosis for diabetic retinopathy (DR). This study evaluated a deep learning (DL) algorithm for automatic DR severity assessment using high-resolution and ultra-widefield (UWF) OCTA. Diabetic patients were examined with 6×6 mm2 high-resolution OCTA and 15×15 mm2 UWF-OCTA using PLEX®Elite 9000. A novel DL algorithm was trained for automatic DR severity inference using both OCTA acquisitions. The algorithm employed a unique hybrid fusion framework, integrating structural and flow information from both acquisitions. It was trained on data from 875 eyes of 444 patients. Tested on 53 patients (97 eyes), the algorithm achieved a good area under the receiver operating characteristic curve (AUC) for detecting DR (0.8868), moderate non-proliferative DR (0.8276), severe non-proliferative DR (0.8376), and proliferative/treated DR (0.9070). These results significantly outperformed detection with the 6×6 mm2 (AUC = 0.8462, 0.7793, 0.7889, and 0.8104, respectively) or 15×15 mm2 (AUC = 0.8251, 0.7745, 0.7967, and 0.8786, respectively) acquisitions alone. Thus, combining high-resolution and UWF-OCTA acquisitions holds the potential for improved early and late-stage DR detection, offering a foundation for enhancing DR management and a clear path for future works involving expanded datasets and integrating additional imaging modalities.
RESUMO
Independent validation studies of automatic diabetic retinopathy screening systems have recently shown a drop of screening performance on external data. Beyond diabetic retinopathy, this study investigates the generalizability of deep learning (DL) algorithms for screening various ocular anomalies in fundus photographs, across heterogeneous populations and imaging protocols. The following datasets are considered: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population). Two multi-disease DL algorithms were developed: a Single-Dataset (SD) network, trained on the largest dataset (OPHDIAT), and a Multiple-Dataset (MD) network, trained on multiple datasets simultaneously. To assess their generalizability, both algorithms were evaluated whenever training and test data originate from overlapping datasets or from disjoint datasets. The SD network achieved a mean per-disease area under the receiver operating characteristic curve (mAUC) of 0.9571 on OPHDIAT. However, it generalized poorly to the other three datasets (mAUC < 0.9). When all four datasets were involved in training, the MD network significantly outperformed the SD network (p = 0.0058), indicating improved generality. However, in leave-one-dataset-out experiments, performance of the MD network was significantly lower on populations unseen during training than on populations involved in training (p < 0.0001), indicating imperfect generalizability.
Assuntos
Retinopatia Diabética , Oftalmopatias , Humanos , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Oftalmopatias/diagnóstico , Técnicas de Diagnóstico Oftalmológico , Curva ROC , AlgoritmosRESUMO
Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders. Cutting edge deep learning based algorithms have been recently developed for automatically detecting AMD from fundus images. However, there are still lack of a comprehensive annotated dataset and standard evaluation benchmarks. To deal with this issue, we set up the Automatic Detection challenge on Age-related Macular degeneration (ADAM), which was held as a satellite event of the ISBI 2020 conference. The ADAM challenge consisted of four tasks which cover the main aspects of detecting and characterizing AMD from fundus images, including detection of AMD, detection and segmentation of optic disc, localization of fovea, and detection and segmentation of lesions. As part of the ADAM challenge, we have released a comprehensive dataset of 1200 fundus images with AMD diagnostic labels, pixel-wise segmentation masks for both optic disc and AMD-related lesions (drusen, exudates, hemorrhages and scars, among others), as well as the coordinates corresponding to the location of the macular fovea. A uniform evaluation framework has been built to make a fair comparison of different models using this dataset. During the ADAM challenge, 610 results were submitted for online evaluation, with 11 teams finally participating in the onsite challenge. This paper introduces the challenge, the dataset and the evaluation methods, as well as summarizes the participating methods and analyzes their results for each task. In particular, we observed that the ensembling strategy and the incorporation of clinical domain knowledge were the key to improve the performance of the deep learning models.
Assuntos
Degeneração Macular , Idoso , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Humanos , Degeneração Macular/diagnóstico por imagem , Fotografação/métodos , Reprodutibilidade dos TestesRESUMO
In recent years, Artificial Intelligence (AI) has proven its relevance for medical decision support. However, the "black-box" nature of successful AI algorithms still holds back their wide-spread deployment. In this paper, we describe an eXplanatory Artificial Intelligence (XAI) that reaches the same level of performance as black-box AI, for the task of classifying Diabetic Retinopathy (DR) severity using Color Fundus Photography (CFP). This algorithm, called ExplAIn, learns to segment and categorize lesions in images; the final image-level classification directly derives from these multivariate lesion segmentations. The novelty of this explanatory framework is that it is trained from end to end, with image supervision only, just like black-box AI algorithms: the concepts of lesions and lesion categories emerge by themselves. For improved lesion localization, foreground/background separation is trained through self-supervision, in such a way that occluding foreground pixels transforms the input image into a healthy-looking image. The advantage of such an architecture is that automatic diagnoses can be explained simply by an image and/or a few sentences. ExplAIn is evaluated at the image level and at the pixel level on various CFP image datasets. We expect this new framework, which jointly offers high classification performance and explainability, to facilitate AI deployment.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Inteligência Artificial , Retinopatia Diabética/diagnóstico por imagem , Humanos , Programas de Rastreamento , FotografaçãoRESUMO
Breast cancer screening benefits from the visual analysis of multiple views of routine mammograms. As for clinical practice, computer-aided diagnosis (CAD) systems could be enhanced by integrating multi-view information. In this work, we propose a new multi-tasking framework that combines craniocaudal (CC) and mediolateral-oblique (MLO) mammograms for automatic breast mass detection. Rather than addressing mass recognition only, we exploit multi-tasking properties of deep networks to jointly learn mass matching and classification, towards better detection performance. Specifically, we propose a unified Siamese network that combines patch-level mass/non-mass classification and dual-view mass matching to take full advantage of multi-view information. This model is exploited in a full image detection pipeline based on You-Only-Look-Once (YOLO) region proposals. We carry out exhaustive experiments to highlight the contribution of dual-view matching for both patch-level classification and examination-level detection scenarios. Results demonstrate that mass matching highly improves the full-pipeline detection performance by outperforming conventional single-task schemes with 94.78% as Area Under the Curve (AUC) score and a classification accuracy of 0.8791. Interestingly, mass classification also improves the performance of mass matching, which proves the complementarity of both tasks. Our method further guides clinicians by providing accurate dual-view mass correspondences, which suggests that it could act as a relevant second opinion for mammogram interpretation and breast cancer diagnosis.
Assuntos
Neoplasias da Mama , Mamografia , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Computador , Detecção Precoce de Câncer , Feminino , Humanos , Interpretação de Imagem Radiográfica Assistida por ComputadorRESUMO
Video feedback provides a wealth of information about surgical procedures and is the main sensory cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post-operative analysis of the surgical procedure. A fundamental building block of such capabilities is the identification and localization of surgical instruments and anatomical structures through semantic segmentation. Deep learning has advanced semantic segmentation techniques in the recent years but is inherently reliant on the availability of labelled datasets for model training. This paper introduces a dataset for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learning models for semantic segmentation on the presented dataset. The dataset is publicly available at https://cataracts-semantic-segmentation2020.grand-challenge.org/.
Assuntos
Extração de Catarata , Catarata , Catarata/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Semântica , Instrumentos CirúrgicosRESUMO
PURPOSE: To compare the performance of automated diabetic retinopathy (DR) detection, using the algorithm that won the 2009 Retinopathy Online Challenge Competition in 2009, the Challenge2009, against that of the one currently used in EyeCheck, a large computer-aided early DR detection project. DESIGN: Evaluation of diagnostic test or technology. PARTICIPANTS: Fundus photographic sets, consisting of 2 fundus images from each eye, were evaluated from 16670 patient visits of 16,670 people with diabetes who had not previously been diagnosed with DR. METHODS: The fundus photographic set from each visit was analyzed by a single retinal expert; 793 of the 16,670 sets were classified as containing more than minimal DR (threshold for referral). The outcomes of the 2 algorithmic detectors were applied separately to the dataset and were compared by standard statistical measures. MAIN OUTCOME MEASURES: The area under the receiver operating characteristic curve (AUC), a measure of the sensitivity and specificity of DR detection. RESULTS: Agreement was high, and examination results indicating more than minimal DR were detected with an AUC of 0.839 by the EyeCheck algorithm and an AUC of 0.821 for the Challenge2009 algorithm, a statistically nonsignificant difference (z-score, 1.91). If either of the algorithms detected DR in combination, the AUC for detection was 0.86, the same as the theoretically expected maximum. At 90% sensitivity, the specificity of the EyeCheck algorithm was 47.7% and that of the Challenge2009 algorithm was 43.6%. CONCLUSIONS: Diabetic retinopathy detection algorithms seem to be maturing, and further improvements in detection performance cannot be differentiated from best clinical practices, because the performance of competitive algorithm development now has reached the human intrareader variability limit. Additional validation studies on larger, well-defined, but more diverse populations of patients with diabetes are needed urgently, anticipating cost-effective early detection of DR in millions of people with diabetes to triage those patients who need further care at a time when they have early rather than advanced DR.
Assuntos
Retinopatia Diabética/diagnóstico , Diagnóstico por Computador , Técnicas de Diagnóstico Oftalmológico , Idoso , Algoritmos , Área Sob a Curva , Feminino , Humanos , Masculino , Variações Dependentes do Observador , Curva ROC , Sensibilidade e EspecificidadeRESUMO
In the last decades, large datasets of fundus photographs have been collected in diabetic retinopathy (DR) screening networks. Through deep learning, these datasets were used to train automatic detectors for DR and a few other frequent pathologies, with the goal to automate screening. One challenge limits the adoption of such systems so far: automatic detectors ignore rare conditions that ophthalmologists currently detect, such as papilledema or anterior ischemic optic neuropathy. The reason is that standard deep learning requires too many examples of these conditions. However, this limitation can be addressed with few-shot learning, a machine learning paradigm where a classifier has to generalize to a new category not seen in training, given only a few examples of this category. This paper presents a new few-shot learning framework that extends convolutional neural networks (CNNs), trained for frequent conditions, with an unsupervised probabilistic model for rare condition detection. It is based on the observation that CNNs often perceive photographs containing the same anomalies as similar, even though these CNNs were trained to detect unrelated conditions. This observation was based on the t-SNE visualization tool, which we decided to incorporate in our probabilistic model. Experiments on a dataset of 164,660 screening examinations from the OPHDIAT screening network show that 37 conditions, out of 41, can be detected with an area under the ROC curve (AUC) greater than 0.8 (average AUC: 0.938). In particular, this framework significantly outperforms other frameworks for detecting rare conditions, including multitask learning, transfer learning and Siamese networks, another few-shot learning solution. We expect these richer predictions to trigger the adoption of automated eye pathology screening, which will revolutionize clinical practice in ophthalmology.