Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Eur Phys J E Soft Matter ; 46(7): 62, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37495860

RESUMO

The interactions that give rise to protein self-assembly are basically electrical and hydrophobic in origin. The electrical interactions are approached in this study as the interaction between electrostatic dipoles originated by the asymmetric distribution of their charged amino acids. However, hydrophobicity is not easily derivable from basic physicochemical principles. Its treatment is carried out here considering a hydrophobic force field originated by "hydrophobic charges". These charges are indices obtained experimentally from the free energies of transferring amino acids from polar to hydrophobic media. Hydrophobic dipole moments are used here in a manner analogous to electric dipole moments, and an empirical expression of interaction energy between hydrophobic dipoles is derived. This methodology is used with two examples of self-assembly systems of different complexity. It was found that the hydrophobic dipole moments of proteins tend to interact in such a way that they align parallel to each other in a completely analogous way to how phospholipids are oriented in biological membranes to form the well-known double layer. In this biological membrane model (BM model), proteins tend to interact in a similar way, although in this case this alignment is modulated by the tendency of the corresponding electrostatic dipoles to counter-align. Helical conformation of influenza virus PDBid: 6Z5L. Two monomers are shown in cyan and green. The corresponding dipole moment vectors are shown in red (electric dipoles) and blue (hydrophobic dipoles). From the inset figure, it can be seen that the growth of the helix is due to electrical attraction of the monomers, overcoming a hydrophobic repulsion (see text).


Assuntos
Modelos Biológicos , Proteínas , Proteínas/química , Aminoácidos , Eletricidade , Interações Hidrofóbicas e Hidrofílicas
2.
Eur Biophys J ; 50(7): 951-961, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131772

RESUMO

Hydrophobic forces play a crucial role in both the stability of B DNA and its interactions with proteins. In the present study, we postulate that the hydrophobic effect is an essential component in establishing specificity in the interaction transcription factor proteins with their consensus DNA sequence partners. The PDB coordinates of more than 50 transcription systems have been used to analyze the hydrophobic attraction of proteins towards their DNA consensus. This analysis includes computing the hydrophobic energy of the interacting molecules by means of their hydrophobic moments. Hydrophobic moments have successfully been used in previous studies involving self-assembly protein systems. In the present case, in spite of some variability, we found specificity in transcription factors when interacting with their respective consensus DNA sequences. By applying our model of biological membrane pattern for hydrophobic interactions, we postulate that hydrophobic forces constitute the necessary intermediate interaction between the unspecific electrostatic attraction for DNA phosphate groups and the very short-range interaction promoting hydrogen bonds. We conclude that hydrophobic interactions serve as the intermediate force guiding transcriptions factors towards the proper hydrogen bonds to their DNAs.


Assuntos
DNA , Proteínas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
3.
Nucleic Acids Res ; 46(D1): D645-D648, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136215

RESUMO

Multitasking, or moonlighting, is the capability of some proteins to execute two or more biological functions. MultitaskProtDB-II is a database of multifunctional proteins that has been updated. In the previous version, the information contained was: NCBI and UniProt accession numbers, canonical and additional biological functions, organism, monomeric/oligomeric states, PDB codes and bibliographic references. In the present update, the number of entries has been increased from 288 to 694 moonlighting proteins. MultitaskProtDB-II is continually being curated and updated. The new database also contains the following information: GO descriptors for the canonical and moonlighting functions, three-dimensional structure (for those proteins lacking PDB structure, a model was made using Itasser and Phyre), the involvement of the proteins in human diseases (78% of human moonlighting proteins) and whether the protein is a target of a current drug (48% of human moonlighting proteins). These numbers highlight the importance of these proteins for the analysis and explanation of human diseases and target-directed drug design. Moreover, 25% of the proteins of the database are involved in virulence of pathogenic microorganisms, largely in the mechanism of adhesion to the host. This highlights their importance for the mechanism of microorganism infection and vaccine design. MultitaskProtDB-II is available at http://wallace.uab.es/multitaskII.


Assuntos
Bases de Dados de Proteínas , Humanos , Internet , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Interface Usuário-Computador
5.
Mol Microbiol ; 108(3): 319-329, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29470847

RESUMO

The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.


Assuntos
Mycoplasma genitalium/genética , Mycoplasma genitalium/fisiologia , Organelas/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/genética , Proteínas de Bactérias/metabolismo , Adesão Celular , Tomografia com Microscopia Eletrônica/métodos , Elétrons , Mutação , Mycoplasma pneumoniae/genética , Organelas/metabolismo
6.
Mol Microbiol ; 105(6): 869-879, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671286

RESUMO

Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and ß lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The ß lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium.


Assuntos
Aderência Bacteriana/fisiologia , Mycoplasma genitalium/metabolismo , Aderência Bacteriana/genética , Mycoplasma/genética , Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/genética , Mycoplasma genitalium/ultraestrutura , Organelas , Uretrite/microbiologia
7.
PLoS Pathog ; 12(4): e1005533, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27082435

RESUMO

The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Movimento Celular/fisiologia , Mycoplasma genitalium/citologia , Organelas/metabolismo , Aderência Bacteriana/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Adesão Celular , Citoesqueleto/metabolismo , Mutação/genética , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo
8.
Mol Microbiol ; 100(1): 125-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26712501

RESUMO

The cell wall-less bacterium Mycoplasma genitalium uses specialized adhesins located at the terminal organelle to adhere to host cells and surfaces. The terminal organelle is a polar structure protruding from the cell body that is internally supported by a cytoskeleton and also has an important role in cell motility. We have engineered a M. genitalium null mutant for MG491 protein showing a massive downstream destabilization of proteins involved in the terminal organelle organization. This mutant strain exhibited striking similarities with the previously isolated MG_218 null mutant strain. Upon introduction of an extra copy of MG_318 gene in both strains, the amount of main adhesins P140 and P110 dramatically increased. These strains were characterized by microcinematography, epifluorescence microscopy and cryo-electron microcopy, revealing the presence of motile cells and filaments in the absence of many proteins considered essential for cell adhesion and motility. These results indicate that adhesin complexes play a major role in the motile machinery of M. genitalium and demonstrate that the rod element of the cytoskeleton core is not the molecular motor propelling mycoplasma cells. These strains containing a minimized motile machinery also provide a valuable cell model to investigate the adhesion and gliding properties of this human pathogen.


Assuntos
Mycoplasma genitalium/fisiologia , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Mutação , Mycoplasma genitalium/ultraestrutura , Fenótipo
9.
Nucleic Acids Res ; 43(10): 4923-36, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925568

RESUMO

The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N(18/19)-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved -10 and -35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycoplasma genitalium/genética , Recombinação Genética , Regulon , Fator sigma/metabolismo , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica , Variação Genética , Mutação , Regiões Promotoras Genéticas , Recombinases Rec A/metabolismo , Fator sigma/genética
10.
J Biol Chem ; 290(3): 1699-711, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25471372

RESUMO

Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nm range, as determined by surface plasmon resonance. The interface between the two partners was confined to the "enriched in aromatic and glycine residues" (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Motores Moleculares/metabolismo , Mycoplasma genitalium/citologia , Sequência de Aminoácidos , Movimento Celular , Dicroísmo Circular , Escherichia coli/metabolismo , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Organelas/metabolismo , Peptídeos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
11.
Eur Biophys J ; 45(4): 341-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26658743

RESUMO

This article describes the formation of homodimers from their constituting monomers, based on the rules set by a simple model of electric and hydrophobic interactions. These interactions are described in terms of the electric dipole moment (D) and hydrophobic moment vectors (H) of proteins. The distribution of angles formed by the two dipole moments of monomers constituting dimers were analysed, as well as the distribution of angles formed by the two hydrophobic moments. When these distributions were fitted to Gaussian curves, it was found that for biological dimers, the D vectors tend mostly to adopt a perpendicular arrangement with respect to each other, in which the constituting dipoles have the least interaction. A minor population tends towards an antiparallel arrangement implying maximum electric attraction. Also in biological dimers, the H vectors of most monomers tend to interact in such a way that the total hydrophobic moment of the dimer increases with respect to those of the monomers. This shows that hydrophobic moments have a tendency to align. In dimers originating in the crystallisation process, the distribution of angles formed by both hydrophobic and electric dipole moments appeared rather featureless, probably because of unspecific interactions in the crystallisation processes. The model does not describe direct interactions between H and D vectors although the distribution of angles formed by both vectors in dimers was analysed. It was found that in most cases these angles tended to be either small (both moments aligned parallel to each other) or large (antiparallel disposition).


Assuntos
Eletricidade , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Proteínas/química , Estabilidade Proteica , Estrutura Quaternária de Proteína
12.
Nucleic Acids Res ; 42(Database issue): D517-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253302

RESUMO

We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored. Multitasking or moonlighting is the capability of some proteins to execute two or more biological functions. Usually, multitasking proteins are experimentally revealed by serendipity. This ability of proteins to perform multitasking functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Even so, the study of this phenomenon is complex because, among other things, there is no database of moonlighting proteins. The existence of such a tool facilitates the collection and dissemination of these important data. This work reports the database, MultitaskProtDB, which is designed as a friendly user web page containing >288 multitasking proteins with their NCBI and UniProt accession numbers, canonical and additional biological functions, monomeric/oligomeric states, PDB codes when available and bibliographic references. This database also serves to gain insight into some characteristics of multitasking proteins such as frequencies of the different pairs of functions, phylogenetic conservation and so forth.


Assuntos
Bases de Dados de Proteínas , Proteínas/fisiologia , Enzimas/fisiologia , Internet , Multimerização Proteica
13.
Biochem Soc Trans ; 42(6): 1692-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399591

RESUMO

Protein multitasking or moonlighting is the capability of certain proteins to execute two or more unique biological functions. This ability to perform moonlighting functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Usually, moonlighting proteins are revealed experimentally by serendipity, and the proteins described probably represent just the tip of the iceberg. It would be helpful if bioinformatics could predict protein multifunctionality, especially because of the large amounts of sequences coming from genome projects. In the present article, we describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. The sequence analysis has been performed: (i) by remote homology searches using PSI-BLAST, (ii) by the detection of functional motifs, and (iii) by the co-evolutionary relationship between amino acids. Programs designed to identify functional motifs/domains are basically oriented to detect the main function, but usually fail in the detection of secondary ones. Remote homology searches such as PSI-BLAST seem to be more versatile in this task, and it is a good complement for the information obtained from protein-protein interaction (PPI) databases. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can be used only in very restricted situations, but can suggest how the evolutionary process of the acquisition of the second function took place.


Assuntos
Biologia Computacional , Proteínas/fisiologia , Mutação , Conformação Proteica , Proteínas/química , Proteínas/genética , Homologia de Sequência de Aminoácidos
14.
Mol Microbiol ; 86(2): 382-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22925012

RESUMO

Mycoplasma genitalium is an emerging human pathogen with the smallest genome found among self-replicating organisms. M. genitalium presents a complex cytoskeleton with a differentiated protrusion known as the terminal organelle. This polar structure plays a central role in functions essential for the virulence of the microorganism, such as motility and cell-host adhesion. A well-conserved Enriched in Aromatic and Glycine Residues motif, the EAGR box, is present in many of the proteins found in the terminal organelle. We determined the crystal structure of the globular domain from M. genitalium MG200 that contains an EAGR box. This structural information is the first at near atomic resolution for the components of the terminal organelle. The structure revealed a dimer stabilized by a compact hydrophobic core that extends throughout the dimer interface. Monomers present a new fold that contains an accurate intra-subunit symmetry relating two conspicuous hairpins. Some features, such as the domain plasticity and the presence and organization of the intra- and inter-subunit symmetry axes, support a role for the EAGR box in protein-protein interactions. Genetic, biochemical and microcinematography analyses of MG200 variants lacking the EAGR box containing domain confirm the relevant and specific association of this domain with cell motility.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/citologia , Mycoplasma genitalium/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Humanos , Dados de Sequência Molecular , Mycoplasma genitalium/química , Mycoplasma genitalium/genética , Alinhamento de Sequência
15.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672169

RESUMO

The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas , Humanos , Proteínas/metabolismo , Homeostase , Movimento Celular , Progressão da Doença
16.
J Proteome Res ; 11(6): 3305-16, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22582988

RESUMO

Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. Proteomic technologies, along with other methods for global gene expression analysis, play a key role in understanding the mechanisms of bacterial pathogenesis and physiology. The proteome of M. genitalium, model of a minimal cell, has been extended using a combination of different proteomic approaches and technologies. The total proteome of this microorganism has been analyzed using gel-based and gel-free approaches, achieving the identification of 85.3% of the predicted ORFs. In addition, a comprehensive analysis of membrane subproteome has been performed. For this purpose, the TX-114 soluble fraction has been analyzed as well as the surface proteins, using cell-surface protein labeling with CyDye. Finally, the serological response of M. genitalium-infected patients and healthy donors has been analyzed to identify proteins that trigger immunological response. Here, we present the most extensive M. genitalium proteome analysis (85.3% of predicted ORFs), a comprehensive M. genitalium membrane analysis, and a study of the human serological response to M. genitalium.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Mycoplasma genitalium/metabolismo , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Estudos de Casos e Controles , Humanos , Infecções por Mycoplasma/sangue , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/imunologia , Proteoma/imunologia , Proteoma/metabolismo
17.
Mol Microbiol ; 78(2): 278-89, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20735775

RESUMO

Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non-essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular , Proteínas do Citoesqueleto/genética , Deleção de Genes , Mycoplasma genitalium/citologia , Aderência Bacteriana , Citocinese , Genes Bacterianos , Teste de Complementação Genética , Mycoplasma genitalium/genética , Mycoplasma genitalium/crescimento & desenvolvimento , Transformação Genética
18.
Front Microbiol ; 12: 695572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589065

RESUMO

It is well-established that FtsZ drives peptidoglycan synthesis at the division site in walled bacteria. However, the function and conservation of FtsZ in wall-less prokaryotes such as mycoplasmas are less clear. In the genome-reduced bacterium Mycoplasma genitalium, the cell division gene cluster is limited to four genes: mraZ, mraW, MG_223, and ftsZ. In a previous study, we demonstrated that ftsZ was dispensable for growth of M. genitalium under laboratory culture conditions. Herein, we show that the entire cell division gene cluster of M. genitalium is non-essential for growth in vitro. Our analyses indicate that loss of the mraZ gene alone is more detrimental for growth of M. genitalium than deletion of ftsZ or the entire cell division gene cluster. Transcriptional analysis revealed a marked upregulation of ftsZ in the mraZ mutant. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics confirmed the overexpression of FtsZ in MraZ-deprived cells. Of note, we found that ftsZ expression was upregulated in non-adherent cells of M. genitalium, which arise spontaneously at relatively high rates. Single cell analysis using fluorescent markers showed that FtsZ localization varied throughout the cell cycle of M. genitalium in a coordinated manner with the chromosome and the terminal organelle (TMO). In addition, our results indicate a possible role for the RNA methyltransferase MraW in the regulation of FtsZ expression at the post-transcriptional level. Altogether, this study provides an extensive characterization of the cell division gene cluster of M. genitalium and demonstrates the existence of regulatory elements controlling FtsZ expression at the temporal and spatial level in mycoplasmas.

19.
Microorganisms ; 9(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203698

RESUMO

Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database (MultitaskProtDB-II) are related to pathogen virulence activity. Moreover, they usually have a canonical function belonging to highly conserved ancestral key functions, and their moonlighting functions are often involved in inducing extracellular matrix (ECM) protein remodeling. There are three main questions in the context of moonlighting proteins in pathogen virulence: (A) Why are a high percentage of pathogen moonlighting proteins involved in virulence? (B) Why do most of the canonical functions of these moonlighting proteins belong to primary metabolism? Moreover, why are they common in many pathogen species? (C) How are these different protein sequences and structures able to bind the same set of host ECM protein targets, mainly plasminogen (PLG), and colonize host tissues? By means of an extensive bioinformatics analysis, we suggest answers and approaches to these questions. There are three main ideas derived from the work: first, moonlighting proteins are not good candidates for vaccines. Second, several motifs that might be important in the adhesion to the ECM were identified. Third, an overrepresentation of GO codes related with virulence in moonlighting proteins were seen.

20.
BMC Struct Biol ; 10: 37, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20969768

RESUMO

BACKGROUND: Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed. RESULTS: To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters. CONCLUSIONS: DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package) is accessible.


Assuntos
Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA