Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(49): 20030-20041, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991724

RESUMO

A new linear trinuclear Co(II)3 complex with a formula of [{Co(µ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm-1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(µ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.

2.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975483

RESUMO

Borneol is a natural monoterpene with significant applications in various industries, including medicine and perfumery. It presents several diastereomers with different physical and chemical properties, influenced by their unique structures and interactions with molecular receptors. However, a complete description of its inherent structure and solvent interactions remains elusive. Here, we report a detailed investigation of the gas-phase experimental structures of borneol and isoborneol, along with the description of their microsolvation complexes with the common solvents water and dimethyl sulfoxide. The molecules and complexes were studied using chirped-pulse Fourier transform microwave spectroscopy coupled to a supersonic expansion source. Although three rotamers are potentially populated under the conditions of the supersonic expansion, only one of them was observed for each monomer. The examination of the monohydrated complexes revealed structures stabilized by hydrogen bonds and non-covalent C-H⋯O interactions, with water as the hydrogen bond donor. Interestingly, in the clusters with dimethyl sulfoxide, borneol and isoborneol change their roles acting as donors. We further identified a higher-energy rotamer of the borneol monomer in one of the complexes with dimethyl sulfoxide, while that rotamer was missing in the experiment for the monomer. This observation is not common and highlights a specific position in borneol especially favorable for forming stable complexes, which could have implications in the understanding of the unique physical and chemical properties of the diastereomers.

3.
Phys Chem Chem Phys ; 24(21): 12849-12859, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532923

RESUMO

Binary complexes between the chiral monoterpenoids camphor and α-fenchol were explored with vibrational and rotational jet spectroscopy as well as density functional theory in order to explore how chirality can influence the binding preferences in gas-phase complexes. The global minimum structures of the two diastereomers were assigned. It is found that chirality recognition leads to different compromises in the fine balance between intermolecular interactions. While one isomer features a stronger hydrogen bond, the other one is more tightly arranged and stabilized by larger London dispersion interactions. These new spectroscopic results help understand the influence of chirality in molecular aggregation and unveil the kind of interactions involved between a chiral alcohol and a chiral ketone with large dispersion contributions.


Assuntos
Cânfora , Norbornanos , Canfanos , Ligação de Hidrogênio , Londres
4.
Phys Chem Chem Phys ; 24(44): 27312-27320, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326023

RESUMO

We present a rotational spectroscopy study of alpha-methoxy phenylacetic acid in the gas phase. This acid is a derivative of mandelic acid and is used in various organic reactions. The conformational landscape of alpha-methoxy phenylacetic acid was explored to gain insight into its intramolecular dynamics. A rich rotational spectrum was obtained using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz range. Five conformers out of six calculated low-energy forms were identified in the spectrum, and the assignment of the 13C singly substituted isotopologues for the lowest-energy conformer led to its accurate structure determination. Splitting patterns were analyzed and attributed to the internal rotation of a methyl top. The analysis of the non-covalent interactions within the molecule highlights the subtle balance in the stabilization of the different conformers. We thus provide high-level structural and intramolecular dynamics information that is also used to benchmark the performance of quantum-chemical calculations.


Assuntos
Fenilacetatos , Teoria Quântica , Conformação Molecular , Micro-Ondas
5.
Phys Chem Chem Phys ; 24(3): 1598-1609, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34942639

RESUMO

For complexes involving aromatic species, substitution effects can influence the preferred geometry. Using broadband rotational spectroscopy, we report the structures of three naphthol-aromatic ring complexes with different heteroatoms (furan and thiophene) and alkyl groups (2,5-dimethylfuran). The aim was to analyze the influence of the presence of heteroatoms or alkyl groups on the structure of the complex and the kind of intermolecular forces that control it. Face or edge arrangements can take place in these complexes via π-π or O-H⋯O/O-H⋯π interactions, respectively. All the experimentally observed complexes present O-H⋯O/O-H⋯π interactions with the hydroxyl group, with different structures and intermolecular interactions depending on the heteroatom present in the five-membered aromatic rings, yielding different symmetries in the experimental structure. Structures are experimentally identified through the use of planar moments of inertia. Further results from SAPT calculations show that dispersion and electrostatic interactions contribute similarly to the stabilization of all the studied complexes. These new spectroscopic results shed light on the influence of dispersion and hydrogen bonding in molecular aggregation of systems with substituted aromatic residues.

6.
Phys Chem Chem Phys ; 24(9): 5539-5545, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174841

RESUMO

We report the reinvestigation of the high-resolution rotational spectrum of estradiol. After removing the known spectral lines corresponding to three conformers of estradiol identified in the gas phase before, a large number of spectral lines remained unassigned in the spectrum. The observation of remaining lines is a common feature in spectra obtained by broadband rotational spectroscopy. In our reinvestigation, the detection of certain patterns resulted in two new sets of experimental rotational constants. Here we describe a systematic analysis, which together with quantum-chemical computations culminated in the assignment of two estrone conformers, namely exhibiting the trans- and the cis-arrangement of the hydroxy group attached to the rigid steroid backbone. Estrone and estradiol only differ in two atomic mass units, and they show a dynamic interconversion equilibrium under certain conditions, which might also have been the case in our experiments due to the heating temperature of 195 °C. The results illustrate the potential of high-resolution rotational spectroscopy to discern between structurally related molecules and to provide their gas-phase structures without information beforehand exploiting the benefit of having remaining unassigned rotational transitions in the spectrum.


Assuntos
Estradiol , Estrona , Análise Espectral
7.
Chemistry ; 27(20): 6198-6203, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33512017

RESUMO

Fluorinated derivatives of biological molecules have proven to be highly efficient at modifying the biological activity of a given protein through changes in the stability and the kind of docking interactions. These interactions can be hindered or facilitated based on the hydrophilic/hydrophobic character of a particular protein region. Diadamantyl ether (C20 H30 O) possesses both kinds of docking sites, serving as a good template to model these important contacts with aromatic fluorinated counterparts. In this work, an experimental study on the structures of several complexes between diadamantyl ether and benzene as well as a series of fluorinated benzenes is reported to analyze the effect of H→F substitution on the interaction and structure of the resulting molecular clusters using rotational spectroscopy. All experimentally observed complexes are largely dominated by London dispersion interactions with the hydrogen-terminated surface areas of diadamantyl ether. Already single substitution of one hydrogen atom with fluorine changes the preferred docking site of the complexes. However, the overall contributions of the different intermolecular interactions are similar for the different complexes, contrary to previous studies focusing on the difference in interactions using fluorinated and non-fluorinated molecules.

8.
Angew Chem Int Ed Engl ; 60(10): 5323-5330, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289239

RESUMO

Examined here are the structures of complexes of benzophenone microsolvated with up to three water molecules by using broadband rotational spectroscopy and the cold conditions of a molecular jet. The analysis shows that the water molecules dock sideways on benzophenone for the water monomer and dimer moieties, and they move above one of the aromatic rings when the water cluster grows to the trimer. The rotational spectra shows that the water trimer moiety in the complex adopts an open-loop arrangement. Ab initio calculations face a dilemma of identifying the global minimum between the open loop and the closed loop, which is only solved when zero-point vibrational energy correction is applied. An OH⋅⋅⋅π bond and a Bürgi-Dunitz interaction between benzophenone and the water trimer are present in the cluster. This work shows the subtle balance between water-water and water-solute interactions when the solute molecule offers several different anchor sites for water molecules.

9.
Chemistry ; 26(47): 10817-10825, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32428323

RESUMO

Diadamantyl ether (DAE, C20 H30 O) represents a good model to study the interplay between London dispersion and hydrogen-bond interactions. By using broadband rotational spectroscopy, an accurate experimental structure of the diadamantyl ether monomer is obtained and its aggregates with water and a variety of aliphatic alcohols of increasing size are analyzed. In the monomer, C-H⋅⋅⋅H-C London dispersion attractions between the two adamantyl subunits further stabilize its structure. Water and the alcohol partners bind to diadamantyl ether through hydrogen bonding and non-covalent Owater/alcohol ⋅⋅⋅H-CDAE and C-Halcohol ⋅⋅⋅H-CDAE interactions. Electrostatic contributions drive the stabilization of all the complexes, whereas London dispersion interactions become more pronounced with increasing size of the alcohol. Complexes with dominant dispersion contributions are significantly higher in energy and were not observed in the experiment. The results presented herein shed light on the first steps of microsolvation and aggregation of molecular complexes with London dispersion energy donor (DED) groups and the kind of interactions that control them.

10.
Phys Chem Chem Phys ; 21(48): 26569-26579, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31782453

RESUMO

A semi-quantitative analysis of the components of two natural essential oils has been carried out using broadband rotational spectroscopy, which is inherently molecule specific. The samples under study were two thyme essential oils from Spain with different compositions: (a) with thymol as the most abundant species (thyme I) and (b) with linalool and 4-carvomenthenol being the most abundant ones (thyme II). Relative intensity measurements of selected rotational transitions were carried out to estimate the abundances of the different species present in these complex mixtures, taking into account the square of the respective dipole moment components. One strength of rotational spectroscopy is its structure sensitivity. Here, we also re-investigated the microwave spectrum of linalool and determined the accurate experimental gas-phase structures of thymol and linalool through the assignment of all 13C isotopologues of their lowest energy conformers. A characteristic splitting pattern of the rotational transitions due to internal rotation of two non-equivalent methyl groups of linalool was observed in the thyme II spectrum. Their internal rotation barriers were experimentally determined to 4.7703(96) kJ mol-1 and 9.2581(74) kJ mol-1, respectively.

11.
Phys Chem Chem Phys ; 21(36): 19879-19889, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475282

RESUMO

1H-Benzotriazole crystallizes as two different polymorphs, namely 4aα and 4aß. One polymorph is chiral and it resolves spontaneously as conglomerates. The other polymorph crystallizes in a centrosymmetric space group and it is therefore achiral. In both polymorphs supramolecular structures are formed starting from achiral monomers. An analysis of these two polymorphs of 1H-benzotriazole has been carried out by a complete strategy involving different solid-state experimental techniques and quantum chemical calculations (DFT, Density Functional Theory). In particular, X-ray crystallography, NMR spectroscopy and vibrational spectroscopy techniques (FarIR, IR and Raman) that are not sensitive to chirality have been used to characterize the two polymorphs structurally. Vibrational spectroscopy (VCD, Vibrational Circular Dichroism) that is sensitive to chirality was employed to determine the absolute configuration (M or P helices) of the chiral supramolecular structure of 4aα.

12.
Chemistry ; 24(3): 721-729, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024085

RESUMO

In the current work we present a detailed analysis of the chiral molecule pulegone, which is a constituent of essential oils, using broadband rotational spectroscopy. Two conformers are observed under the cold conditions of a molecular jet. We report an accurate experimentally determined structure for the lowest energy conformer. For both conformers, a characteristic splitting pattern is observed in the spectrum, resulting from the internal rotation of the two non-equivalent methyl groups situated in the isopropylidene side chain. The determined energy barriers are 1.961911(46) kJ mol-1 and 6.3617(12) kJ mol-1 for one conformer, and 1.96094(74) kJ mol-1 and 6.705(44) kJ mol-1 for the other one. Moreover, a cluster of the lowest energy conformer with one water molecule is reported. The water molecule locks one of the methyl groups by means of a hydrogen bond and some secondary interactions, so that we only observe internal rotation splittings from the other methyl group with an internal rotation barrier of 2.01013(38) kJ mol-1 . Additionally, the chirality-sensitive microwave three-wave mixing technique is applied for the differentiation between the enantiomers, which can become of further use for the analysis of essential oils.


Assuntos
Monoterpenos/química , Água/química , Monoterpenos Cicloexânicos , Análise de Fourier , Ligação de Hidrogênio , Cinética , Micro-Ondas , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Rotação , Estereoisomerismo , Termodinâmica
13.
Analyst ; 143(6): 1406-1416, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29457166

RESUMO

For the first time, the success of a methodology for the determination of enantiomeric excess (% ee) in chiral solid samples by vibrational circular dichroism (VCD) spectroscopy is reported. We have used camphor to determine the % ee in a blind sample constituted by a mixture of its two enantiomers as a test for the validity of our approach. IR and VCD spectra of different enantiomeric mixtures of R/S-camphor in Nujol mulls were recorded and linear regressions of VCD intensities (ΔAbs.) vs. % ee for selected bands were found. Finally, the VCD intensities of a blind sample were interpolated in these linear regressions, obtaining its % ee with a rms of 2.4. These results in the solid phase were complemented with the determination of % ee in the liquid phase by VCD and NMR techniques, which are proved to be complementary techniques to carry out this kind of analysis. In the same way as in the VCD solid phase, linear regressions of ΔAbs. vs. % ee for selected bands were established, obtaining a rms of 1.1 in the % ee determination of a blind sample. 1H NMR experiments at 600 MHz using the chiral solvating agent, (S,S)-ABTE, allow the determination of the proportions of enantiomers in CD2Cl2 solution with great accuracy. 13C CPMAS NMR spectra prove that this technique cannot be used for conglomerates and/or solid solutions.

14.
Chemphyschem ; 18(3): 274-280, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27880857

RESUMO

Monoterpenoids are biogenic volatile organic compounds that play a major role in atmospheric chemistry by participating in the formation of aerosols. In this work, the monoterpenoid (R)-(+)-limonene oxide (C10 H16 O) was characterized in the gas phase by Fourier-transform microwave spectroscopy in a supersonic jet. Five conformers of limonene oxide, four equatorial and one axial considering the configuration of the isopropenyl group, were unambiguously identified from analysis of the rotational spectrum. The observed conformers include cis and trans forms, which are stabilized by a subtle balance of hydrogen bonds, dispersive interactions, and steric effects. Estimated conformational relative abundances surprisingly reveal that the abundance of the axial conformer is similar to that of some of the equatorial conformers. In addition, the potential energy surface was extensively explored by using density functional theory and ab initio methods.


Assuntos
Micro-Ondas , Monoterpenos/química , Monoterpenos Cicloexânicos , Conformação Molecular , Estrutura Molecular , Teoria Quântica
15.
J Phys Chem A ; 121(30): 5665-5674, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28700240

RESUMO

2-Propyl-1H-benzimidazole (2PrBzIm) is a small molecule, commercially available, which displays a curious behavior in the solid state. 2PrBzIm, although devoid of chirality by fast rotation about a single bond of the propyl group in solution, crystallizes as a conglomerate showing chiroptical properties. An exhaustive analysis of its crystal structure and a wide range of experiments monitored by vibrational circular dichroism spectroscopy eliminated all possibilities of an artifact. What remains is a new example of the unexplained phenomenon of persistent supramolecular chirality.

16.
Chemphyschem ; 16(10): 2226-36, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25943252

RESUMO

The biochemically important interconversion process between aldoses and ketoses is assumed to take place via 1,2-enediol or 1,2-enediolate intermediates, but such intermediates have never been isolated. The current work was undertaken in an attempt to detect the presence of the 1,2-enediol structure of glycolaldehyde in alkaline medium, actually a 1,2-enediolate, and to try to clarify the scarce data existing about both the formation of deprotonated enediol and the aldo-enediolate equilibrium. The Raman spectra of neutral and basic solutions were recorded as a function of time for eleven days. Several bands associated with the presence of the enediolate were observed in alkaline medium. Glycolaldehyde exists as three different structures in aqueous solution at neutral pH, that is, hydrated aldehydes, aldehydes and dimers, with a respective ratio of approximately 4:0.25:1. Additionally, the formation of Z-enediolate forms takes place at basic pH, together with an increase in the concentration of aldehyde species, such as 2-oxoethan-1-olate, and a decrease in the concentrations of the hydrated aldehyde and dimeric forms. The theoretical ratio of ≈1.5:1 for aldehyde:Z-enediolate reproduces the experimental Raman spectrum in basic medium, with an additional contribution of the previously mentioned ratio between the hydrated aldehyde and dimeric forms. Finally, Raman spectroscopy allowed us to monitor the enolization of this carbohydrate model and conclude that aldo-enediol tautomerism-formally aldo-enediolate-happens when a suitable amount of basic species is added.


Assuntos
Acetaldeído/análogos & derivados , Acetaldeído/química , Teoria Quântica , Soluções , Análise Espectral Raman , Água/química
17.
Dalton Trans ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716508

RESUMO

Four mononuclear CoII complexes of formula [Co(L)(SCN)2(CH3OH)0.5(H2O)0.5]·1.5H2O·0.75CH3OH (1), [Co(L1)Cl2]·H2O·2CH3CN (2), [Co(L1)(SCN)2]·1.5H2O·CH3OH (3) and [Co(L1)]ClO4·2CH3OH (4) were prepared from the N6-tripodal Schiff base ligands (S)P[N(Me)NC(H)2-Q]3 (L) and (S)P[N(Me)NC(H)1-ISOQ]3 (L1), where Q and ISOQ represent quinolyl and isoquinolyl moieties, respectively. In 1, the L ligand does not coordinate to the CoII ion in a tripodal manner but using a new N,N,S tridentate mode, which is due to the fact that the N6-tripodal coordination promotes a strong steric hindrance between the quinolyl moieties. However, L1 can coordinate to the CoII ions either in a tripodal manner using CoII salts with poorly coordinating anions to give 4 or in a bisbidentate fashion using CoII salt-containing medium to strongly coordinating anions to afford 2 and 3. In the case of L1, there is no steric hindrance between ISOQ moieties after coordination to the CoII ion. The CoII ion exhibits a distorted octahedral geometry for compounds 1-3, with the anions in cis positions for the former and in trans positions for the two latter compounds. Compound 4 shows an intermediate geometry between an octahedral and trigonal prism but closer to the latter one. DC magnetic properties, HFEPR and FIRMS measurements and ab initio calculations demonstrate that distorted octahedral complexes 1-3 exhibit easy-plane magnetic anisotropy (D > 0), whereas compound 4 shows large easy-axis magnetic anisotropy (D < 0). Comparative analysis of the magneto-structural data underlines the important role that is played not only by the coordination geometry but also the electronic effects in determining the anisotropy of the CoII ions. Compounds 2-3 show a field-induced slow relaxation of magnetization. Despite its large easy-axis magnetic anisotropy, compound 4 does not show significant slow relaxation (SMR) above 2 K under zero applied magnetic fields, but its magnetic dilution with ZnII triggers SMR at zero field. Finally, it is worth remarking that compounds 2-4 show smaller relaxation times than the analogous complexes with the tripodal ligand bearing in its arms pyridine instead of isoquinoline moieties, which is most likely due to the increase of the molecular size in the former one.

18.
Dalton Trans ; 53(21): 8988-9000, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38721696

RESUMO

A new family of six complexes based on 5-nitropicolinic acid (5-npic) and transition metals has been obtained: [M(5-npic)2]n (MII = Mn (1) and Cd (2)), [Cu(5-npic)2]n (3), and [M(5-npic)2(H2O)2] (MII = Co (4), Ni (5), and Zn (6)), which display 1D, 2D, and mononuclear structures, respectively, thanks to different coordination modes of 5-npic. After their physicochemical characterization by single-crystal X-ray diffraction (SCXRD), elemental analyses (EA), and spectroscopic techniques, quantum chemical calculations using Time-Dependent Density Functional Theory (TD-DFT) were performed to further study the luminescence properties of compounds 2 and 6. The potential anticancer activity of all complexes was tested against three tumor cell lines, B16-F10, HT29, and HepG2, which are models widely used for studying melanoma, colon cancer, and liver cancer, respectively. The best results were found for compounds 2 and 4 against B16-F10 (IC50 = 26.94 and 45.10 µg mL-1, respectively). In addition, anti-inflammatory studies using RAW 264.7 cells exhibited promising activity for 2, 3, and 6 (IC50 NO = 5.38, 24.10, and 17.63 µg mL-1, respectively). This multidisciplinary study points to complex 2, based on CdII, as a promising anticancer and anti-inflammatory material.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ácidos Picolínicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Camundongos , Animais , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Teoria da Densidade Funcional , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Desenho de Fármacos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Modelos Moleculares , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos
19.
Chem Commun (Camb) ; 59(7): 952-955, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36597978

RESUMO

The replacement of pyridine by 1-methyl-imidazol in the arms of a N6-tripodal ligand allows preparing two new CoII complexes with quasi-ideal triangular prismatic geometry, which behave as SIMs (Single Ion Magnets) at zero dc field with enhanced axial magnetic anisotropy, magnetic relaxation times and magnetic hysteresis.

20.
IUCrJ ; 5(Pt 6): 706-715, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443355

RESUMO

This paper reports on the polymorphism of 2-propyl-1H-benzimidazole (2PrBzIm) induced by temperature change. Upon heating, an irreversible reconstructive-type phase transition at T = 384 K from the ordered form I (P212121) to a new polymorph, form II HT (Pcam), was observed. The structural transformation between forms I and II involves significant changes in the crystal packing, as well as a key conformational variation around the propyl chain of the molecule. After the first irreversible phase transition, the II HT form undergoes two further (reversible) phase transitions upon cooling at 361 K (II RT) and 181 K (II LT). All three phases (forms II HT, II RT and II LT) have almost identical crystal packing and, given the reversibility of the conversions as a function of temperature, they are referred to as form II temperature phases. They differ, however, with respect to conformational variations around the propyl chain of 2PrBzIm. Energy calculations of the gas-phase conformational energy landscape of this compound about its flexible bonds allowed us to classify the observed conformational variations of all forms into changes and adjustments of conformers. This reveals that forms I and II are related by conformational change, and that two of the form II phases (HT and RT) are related by conformational adjustment, whilst the other two (RT and LT) are related by conformational change. We introduce the term 'conformational phases' for different crystal phases with almost identical packing but showing changes in conformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA