Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 22(23): 28327-37, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402074

RESUMO

Advanced LIGO (aLIGO) requires multiple frequency sidebands to disentangle all of the main interferometer's length signals. This paper presents the results of a risk reduction experiment to produce two sets of frequency sidebands in parallel, avoiding mixed 'sidebands on sidebands'. Two phase modulation frequencies are applied to separate Electro-Optic Modulators (EOMs), with one EOM in each of the two arms of a Mach-Zehnder interferometer. In this system the Mach-Zehnder's arm lengths are stabilized to reduce relative intensity noise in the recombined carrier beam by feeding a corrective control signal back to the Rubidium Titanyl Phosphate (RTP) EOM crystals to drive the optical path length difference to zero. This setup's use of the RTP crystals as length actuators provides enough bandwidth in the feedback to meet arm length stability requirements for aLIGO.


Assuntos
Desenho Assistido por Computador , Gravitação , Interferometria/instrumentação , Óptica e Fotônica , Transdutores , Desenho de Equipamento , Reprodutibilidade dos Testes
2.
Phys Rev Lett ; 107(1): 014301, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797544

RESUMO

Near-field radiation allows heat to propagate across a small vacuum gap at rates several orders of magnitude above that of far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase in agreement with expectations from theory. These experiments, conducted near 300 K, have measured the heat transfer as a function of separation over mm to µm and as a function of temperature differences between 2.5 and 30 K. The experiments demonstrate that evanescence can be put to work to transfer heat from an object without actually touching it.

3.
Rev Sci Instrum ; 87(11): 114503, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910445

RESUMO

The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 10-18m/Hz with accuracy and precision of better than 1%.

4.
Opt Lett ; 31(2): 217-9, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16441035

RESUMO

An adaptive optical system for precise control of a laser beam's mode structure has been developed. The system uses a dynamic lens based on controlled optical path deformation in a dichroic optical element that is heated with an auxiliary laser. Our method is essentially aberration free, has high dynamic range, and can be implemented with high average power laser beams where other adaptive optics methods fail. A quantitative model agrees well with our experimental data and demonstrates the potential of our method as a mode-matching and beam-shaping element for future large-scale gravitational wave detectors.

5.
Phys Rev Lett ; 95(1): 013901, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090615

RESUMO

Diffraction gratings affect the absolute phase of light in a way that is not obvious from the usual derivation of optical paths using the grating equation. For example, consider light which encounters first one and then the second of two parallel gratings. If one grating is moved parallel to its surface, the phase of the light diffracted from the grating pair is shifted by 2pi each time the grating is moved by one grating constant, even though the geometric path length is not altered by the motion. This additional phase shift must be included when incorporating diffraction gratings in interferometers.

6.
Opt Lett ; 25(14): 1019-21, 2000 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18064259

RESUMO

The frequency of a 700-mW monolithic nonplanar Nd:YAG ring laser (NPRO) depends, with a large coupling coefficient (megahertz per milliwatt), on the power of its laser-diode pump source. Using this effect, we demonstrate frequency stabilization of a NPRO to a frequency reference by feeding back to the current of its pump diodes. We achieved an error-point frequency noise smaller than 1mHz/ radicalHz and, simultaneously, a reduction of the power noise of the NPRO by 10 dB without an additional power-stabilization feedback system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA