Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 195(4): 658-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204470

RESUMO

Pseudomonas syringae injects numerous bacterial proteins into host plant cells through a type 3 secretion system (T3SS). One of the first such bacterial effectors discovered, HopA1, is a protein that has unknown functions in the host cell but possesses close homologs that trigger the plant hypersensitive response in resistant strains. Like the virulence factors in many bacterial pathogens of animals, HopA1 depends upon a cognate chaperone in order to be effectively translocated by the P. syringae T3SS. Herein, we report the crystal structure of a complex of HopA1(21-102) with its chaperone, ShcA, determined to 1.56-Å resolution. The structure reveals that three key features of the chaperone-effector interactions found in animal pathogens are preserved in the Gram-negative pathogens of plants, namely, (i) the interaction of the chaperone with a nonglobular polypeptide of the effector, (ii) an interaction centered on the so-called ß-motif, and (iii) the presence of a conserved hydrophobic patch in the chaperone that recognizes the ß-motif. Structure-based mutagenesis and biochemical studies have established that the ß-motif is critical for the stability of this complex. Overall, these results show that the ß-motif interactions are broadly conserved in bacterial pathogens utilizing T3SSs, spanning an interkingdom host range.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Chaperonas Moleculares/metabolismo , Pseudomonas syringae/metabolismo , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Mutação , Plantas/microbiologia , Ligação Proteica , Conformação Proteica , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Fatores de Virulência/genética
2.
Proc Natl Acad Sci U S A ; 106(12): 4864-9, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19273841

RESUMO

Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E3 ligase [which we have termed NEL for Novel E3 Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E3 ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Células HeLa , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Ubiquitina-Proteína Ligases/química , Ubiquitinação
3.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 6): 709-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20516623

RESUMO

Protein type III secretion systems (T3SSs) are organic nanosyringes that achieve an energy-dependent translocation of bacterial proteins through the two membranes of Gram-negative organisms. Examples include the pathogenic systems of animals, plants and symbiotic bacteria that inject factors into eukaryotic cells, and the flagellar export system that secretes flagellin. T3SSs possess a core of several membrane-associated proteins that are conserved across all known bacterial species that use this system. The Salmonella protein InvA is one of the most highly conserved proteins of this core of critical T3SS components. The crystal structure of a C-terminal domain of InvA reveals an unexpected homology to domains that have been repeatedly found as building blocks of other elements of the T3SS apparatus. This suggests the surprising hypothesis that evolution has produced a significant component of the apparatus structure through a series of gene-duplication and gene-rearrangement events.


Assuntos
Proteínas de Bactérias/química , Citoplasma/química , Salmonella/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
4.
J Mol Biol ; 341(5): 1283-94, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15321722

RESUMO

Helical histidine phosphotransferase (HPt) domains play a central role in many aspects of bacterial signal transduction. The 0.98 A resolution crystallographic structure of the amino-terminal HPt domain (P1) from the chemotaxis kinase CheA of Thermotoga maritima reveals a remarkable degree of structural heterogeneity within a four-helix bundle. Two of the four helices have alternate main-chain conformations that differ by a 1.3-1.7A shift along the bundle axis. These dual conformers were only resolved with atomic resolution diffraction data and their inclusion significantly improved refinement statistics. Neither conformer optimizes packing within the helical core, consistent with their nearly equal refined occupancies. Altered hydrogen bonding within an inter-helical loop may facilitate transition between conformers. Two discrete structural states rather than a continuum of closely related conformations indicates an energetic barrier to conversion between conformers in the crystal at 100K, although many more states are expected in solution at physiological temperatures. Anisotropic atomic thermal B factors within the two conformers indicate modest overall atomic displacement that is largest perpendicular to the helical bundle and not along the direction of apparent motion. Despite the conformational heterogeneity of P1 in the crystal at low temperature, the protein displays high thermal stability in solution (T(m)=100 degrees C). Addition of a variable C-terminal region that corresponds to a mobile helix in other CheA structures significantly narrows the temperature width of the unfolding transition and may affect domain dynamics. Helices that compose the kinase recognition site and contain the phospho-accepting His45 do not have alternate conformations. In this region, atomic resolution provides detailed structural parameters for a conserved hydrogen-bonding network that tunes the reactivity of His45. A neighboring glutamate (E67), essential for phosphotransferase activity hydrogen bonds directly to His45 N(delta1). E67 generates a negative electrostatic surface surrounding the reactive His that is conserved by most CheA kinases, but absent in related phosphotransferase proteins. The P1 conformations that we observe are likely relevant to other helical or coiled-coil proteins and may be important for generating switches in signaling processes.


Assuntos
Proteínas de Bactérias/química , Fosfotransferases/química , Conformação Proteica , Proteínas Quinases/química , Thermotoga maritima/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Histidina/metabolismo , Ligação de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Molecular , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína
5.
J Mol Biol ; 338(1): 149-58, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15050830

RESUMO

NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions.


Assuntos
Dissulfetos/química , Dissulfetos/metabolismo , Lactalbumina/química , Lactalbumina/metabolismo , Dobramento de Proteína , Substituição de Aminoácidos , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactalbumina/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica , Ureia/farmacologia
6.
J Biol Chem ; 280(34): 30581-5, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15994328

RESUMO

The CheA histidine kinase initiates the signal transduction pathway of bacterial chemotaxis by autophosphorylating a conserved histidine on its phosphotransferase domain (P1). Site-directed mutations of neighboring conserved P1 residues (Glu-67, Lys-48, and His-64) show that a hydrogen-bonding network controls the reactivity of the phospho-accepting His (His-45) in Thermotoga maritima CheA. In particular, the conservative mutation E67Q dramatically reduces phosphotransfer to P1 without significantly affecting the affinity of P1 for the CheA ATP-binding domain. High resolution crystallographic studies revealed that although all mutants disrupt the hydrogen-bonding network to varying degrees, none affect the conformation of His-45. 15N-NMR chemical shift studies instead showed that Glu-67 functions to stabilize the unfavored N(delta1)H tautomer of His-45, thereby rendering the N(epsilon2) imidazole unprotonated and well positioned for accepting the ATP phosphoryl group.


Assuntos
Histidina/química , Proteínas Quinases/fisiologia , Thermotoga maritima/enzimologia , Trifosfato de Adenosina/química , Quimiotaxia , Clonagem Molecular , Cristalografia por Raios X , Histidina Quinase , Hidrogênio , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Conformação Proteica , Proteínas Quinases/química , Estrutura Terciária de Proteína , Thermotoga maritima/fisiologia
7.
Biochemistry ; 43(8): 2228-40, 2004 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-14979719

RESUMO

Dimerization of the chemotaxis histidine kinase CheA is required for intersubunit autophosphorylation [Swanson, R. V., Bourret, R. B., and Simon, M. I. (1993) Mol. Microbiol. 8, 435-441]. Here we show that CheA dimers exchange subunits by the rate-limiting dissociation of a central four-helix bundle association domain (P3), despite the high stability of P3 versus unfolding. P3 alone determines the stability and exchange properties of the CheA dimer. For CheA proteins from the mesophile Escherichia coli and the thermophile Thermotoga maritima, subunit dissociation activates at temperatures where the respective organisms live (37 and 80 degrees C). Under destabilizing conditions, P3 dimer dissociation is cooperative with unfolding. Chemical denaturation is reversible for both EP3 and TP3. Aggregation accompanies thermal unfolding for both proteins under most conditions, but thermal unfolding is reversible and two-state for EP3 at low protein concentrations. Residue differences within interhelical loops may account for the contrasted thermodynamic properties of structurally similar EP3 and TP3 (41% sequence identity). Under stabilizing conditions, greater correlation between activation energy for dimer dissociation and P3 stability suggests more unfolding in the dissociation of EP3 than TP3. Furthermore, destabilization of extended conformations by glycerol slows relative dissociation rates more for EP3 than for TP3. Nevertheless, at physiological temperatures, neither protein likely unfolds completely during subunit exchange. EP3 and TP3 will not exchange subunits with each other. The receptor coupling protein CheW reduces the subunit dissociation rate of the T. maritima CheA dimer by interacting with the regulatory domain P5.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas Quinases/química , Subunidades Proteicas/química , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Quimiotaxia , Dimerização , Estabilidade Enzimática , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Histidina Quinase , Cinética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Químicos , Dados de Sequência Molecular , Dobramento de Proteína , Inibidores de Proteínas Quinases , Proteínas Quinases/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Homologia Estrutural de Proteína , Temperatura , Termodinâmica , Thermotoga maritima/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA