RESUMO
Data on SARS-CoV-2 infection in wildlife species is limited. The high prevalences found in mustelid species such as free-ranging American minks (Neovison vison) and domestic ferrets (Mustela putorius furo) justify the study of this virus in the closely related autochthonous free-ranging European polecat (Mustela putorius). We analysed lung samples from 48 roadkilled polecats collected when the human infection reached its highest levels in Spain (2020-2021). We did not detect infections by SARS-CoV-2; however, surveillance in wild carnivores and particularly in mustelids is still warranted, due to their susceptibility to this virus.
RESUMO
Roads have pervasive impacts on wildlife, including habitat loss and fragmentation, road mortality, habitat pollution and increased human use of habitats surrounding them. However, the effects of roads on interspecific interactions are less understood. Here we provide a synthesis of the existing literature on how species interactions may be disrupted by roads, identify knowledge gaps, and suggest avenues for future research and conservation management. We conducted a systematic search using the Web of Science database for each species interaction (predation, competition, mutualism, parasitism, commensalism and amensalism). These searches yielded 2144 articles, of which 195 were relevant to our topic. Most of these studies focused on predation (50%) or competition (24%), and less frequently on mutualism (17%) or, parasitism (9%). We found no studies on commensalism or amensalism. Studies were biased towards mammals from high-income countries, with most conducted in the USA (34%) or Canada (18%). Our literature review identified several patterns. First, roads disrupt predator-prey relationships, usually with negative impacts on prey populations. Second, new disturbed habitats created in road corridors often benefit more competitive species, such as invasive species, although some native or endangered species can also thrive there. Third, roads degrade mutualistic interactions like seed dispersal and pollination. Fourth, roads can increase parasitism rates, although the intensity of the alteration is species specific. To reduce the negative impacts of roads on interspecific interactions, we suggest the following management actions: (i) verges should be as wide and heterogenous as possible, as this increases microhabitat diversity, thus enhancing ecosystem services like pollination and seed dispersal; (ii) combining different mowing regimes can increase the complexity of the habitat corridor, enabling it to act as a habitat for more species; (iii) the use of de-icing salts should be gradually reduced and replaced with less harmful products or maintenance practices; (iv) wildlife passes should be implemented in groups to reduce animal concentrations inside them; (v) periodic removal of carcasses from the road to reduce the use of this resource by wildlife; and (vi) implementation of traffic-calming schemes could enhance interspecific interactions like pollination and avoid disruption of predator-prey relationships.