Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(19): 10985-10996, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30148351

RESUMO

This study characterizes a decadal assessment of polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of mesopelagic fish species as indicators of the environmental health of the Gulf of Mexico (GoM) deep-pelagic ecosystem. Mesopelagic fishes were collected prior to the Deepwater Horizon (DWH) oil spill (2007), immediately post-spill (2010), 1 year after the spill (2011), and 5-6 years post-spill (2015-2016) to assess if the mesopelagic ecosystem was exposed to, and retained, PAH compounds from the DWH spill. Results indicated that a 7- to 10-fold increase in PAHs in fish muscle tissues occurred in 2010-2011 (4972 ± 1477 ng/g) compared to 2007 (630 ± 236 ng/g). In 2015-2016, PAH concentrations decreased close to the levels measured in 2007 samples (827 ± 138 ng/g); however, the composition of PAHs still resembles a petrogenic source similar to samples collected in 2010-2011. PAH composition in muscle samples indicated that natural sources (e.g., Mississippi River and natural seeps) or spatial variability within the GoM do not explain the temporal variability of PAHs observed from 2007 to 2016. Furthermore, analysis of different fish tissues indicated the dietary intake and maternal transfer of PAHs as the primary mechanisms for bioaccumulation in 2015-2016, explaining the elevated levels and composition of PAHs in ovarian eggs.


Assuntos
Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Golfo do México , Mississippi
2.
Sci Rep ; 13(1): 15180, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704666

RESUMO

Understanding the migratory patterns of large whales is of conservation importance, especially in identifying threats to specific populations. Migration ecology, including migratory destinations, movements and site fidelity for humpback whales (Megaptera novaeangliae) remain poorly studied in parts of the range of the Central America population, considered endangered under the United States Endangered Species Act. This study aimed to investigate the migratory destinations of humpback whales sighted at two study sites in Nicaragua, which are part of the Central America population. A ten-year photographic database of humpback whales observed off Nicaragua was combined with citizen science contributions and sightings from dedicated research programs. The resulting image collection was compared with available historical photo identifications and databases using an automated image recognition algorithm. This approach yielded 36 years of photographic identification totaling 431 recaptures in Nicaragua (2006-2008 and 2016-2021) and 2539 recaptures (1986-2020) in both feeding and breeding grounds of 176 unique individuals sighted in Nicaragua. Our results showed that photo-identified whales were recaptured between October and April in breeding grounds and year-round in feeding grounds between British Columbia and California, with peak recaptures between June and October. Our study provided first-time evidence on fine-scale site affinity of individual humpback whales within Nicaraguan waters and to other breeding and feeding grounds.


Assuntos
Jubarte , Animais , Nicarágua , Melhoramento Vegetal , América Central , Algoritmos , Cetáceos
3.
Sci Rep ; 13(1): 10237, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353581

RESUMO

We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.


Assuntos
Jubarte , Animais , Inteligência Artificial , Oceano Pacífico , Estações do Ano
4.
J Acoust Soc Am ; 130(5): 3068-76, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22087934

RESUMO

Dolphins routinely use sound for social purposes, foraging and navigating. These sounds are most commonly classified as whistles (tonal, frequency modulated, typical frequencies 5-10 kHz) or clicks (impulsed and mostly ultrasonic). However, some low frequency sounds have been documented in several species of dolphins. Low frequency sounds produced by bottlenose dolphins (Tursiops truncatus) were recorded in three locations along the Gulf of Mexico. Sounds were characterized as being tonal with low peak frequencies (mean = 990 Hz), short duration (mean = 0.069 s), highly harmonic, and being produced in trains. Sound duration, peak frequency and number of sounds in trains were not significantly different between Mississippi and the two West Florida sites, however, the time interval between sounds within trains in West Florida was significantly shorter than in Mississippi (t = -3.001, p = 0.011). The sounds were significantly correlated with groups engaging in social activity (F=8.323, p=0.005). The peak frequencies of these sounds were below what is normally thought of as the range of good hearing in bottlenose dolphins, and are likely subject to masking by boat noise.


Assuntos
Percepção Auditiva , Golfinho Nariz-de-Garrafa/fisiologia , Vocalização Animal , Animais , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Ruído dos Transportes/efeitos adversos , Mascaramento Perceptivo , Densidade Demográfica , Navios , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Fatores de Tempo
5.
Mar Pollut Bull ; 94(1-2): 241-50, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25778549

RESUMO

The blowout of the Deepwater Horizon (DWH) drill-rig produced a surface oil layer, dispersed micro-droplets throughout the water column, and sub-surface plumes. We measured stable carbon and nitrogen isotopes in mesopelagic fishes and shrimps in the vicinity of DWH collected prior to, six weeks after, and one year after the oil spill (2007, 2010 and 2011). In 2010, the year of the oil spill, a small but significant depletion of δ(13)C was found in two mesopelagic fishes (Gonostoma elongatum and Chauliodus sloani) and one shrimp (Systellaspis debilis); a significant δ(15)N enrichment was identified in the same shrimp and in three fish species (G. elongatum, Ceratoscopelus warmingii, and Lepidophanes guentheri). The δ(15)N change did not suggest a change of trophic level, but did indicate a change in diet. The data suggest that carbon from the Deepwater Horizon oil spill was incorporated into the mesopelagic food web of the Gulf of Mexico.


Assuntos
Crustáceos/metabolismo , Peixes/metabolismo , Poluição por Petróleo , Animais , Carbono , Isótopos de Carbono/metabolismo , Monitoramento Ambiental , Golfo do México , México , Isótopos de Nitrogênio/metabolismo
6.
J Acoust Soc Am ; 120(3): 1671-83, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17004488

RESUMO

Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.


Assuntos
Acústica , Golfinho Nariz-de-Garrafa/fisiologia , Comportamento Materno/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Animais , Ecologia , Meio Ambiente , Feminino , Florida , Água do Mar
7.
Anim Cogn ; 8(1): 17-26, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15221637

RESUMO

Bottlenose dolphins are unusual among non-human mammals in their ability to learn new sounds. This study investigates the importance of vocal learning in the development of dolphin signature whistles and the influence of social interactions on that process. We used focal animal behavioral follows to observe six calves in Sarasota Bay, Fla., recording their social associations during their first summer, and their signature whistles during their second. The signature whistles of five calves were determined. Using dynamic time warping (DTW) of frequency contours, the calves' signature whistles were compared to the signature whistles of several sets of dolphins: their own associates, the other calves' associates, Tampa Bay dolphins, and captive dolphins. Whistles were considered similar if their DTW similarity score was greater than those of 95% of the whistle comparisons. Association was defined primarily in terms of time within 50 m of the mother/calf pair. On average, there were six dolphins with signature whistles similar to the signature whistles of each of the calves. These were significantly more likely to be Sarasota Bay resident dolphins than non-Sarasota dolphins, and (though not significantly) more likely to be dolphins that were within 50 m of the mother and calf less than 5% of the time. These results suggest that calves may model their signature whistles on the signature whistles of members of their community, possibly community members with whom they associate only rarely.


Assuntos
Golfinhos/psicologia , Comportamento Imitativo , Aprendizagem , Meio Social , Vocalização Animal , Estimulação Acústica , Animais , Feminino , Individualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA