Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Mol Life Sci ; 80(2): 42, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645496

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Neuroesteroides , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/tratamento farmacológico , Esteroides/farmacologia , Regulação Alostérica/fisiologia
2.
Brain ; 143(9): 2709-2720, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830245

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumour if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery. Previous studies showed that SGE-301, a synthetic analogue of 24(S)-hydroxycholesterol, which is a potent and selective positive allosteric modulator of NMDAR, reverted the memory deficit caused by phencyclidine (a non-competitive antagonist of NMDAR), and prevented the NMDAR dysfunction caused by patients' NMDAR antibodies in cultured neurons. An advantage of SGE-301 is that it is optimized for systemic delivery such that plasma and brain exposures are sufficient to modulate NMDAR activity. Here, we used SGE-301 to confirm that in cultured neurons it prevented the antibody-mediated reduction of receptors, and then we applied it to a previously reported mouse model of passive cerebroventricular transfer of patient's CSF antibodies. Four groups were established: mice receiving continuous (14-day) infusion of patients' or controls' CSF, treated with daily subcutaneous administration of SGE-301 or vehicle (no drug). The effects on memory were examined with the novel object location test at different time points, and the effects on synaptic levels of NMDAR (assessed with confocal microscopy) and plasticity (long-term potentiation) were examined in the hippocampus on Day 18, which in this model corresponds to the last day of maximal clinical and synaptic alterations. As expected, mice infused with patient's CSF antibodies, but not those infused with controls' CSF, and treated with vehicle developed severe memory deficit without locomotor alteration, accompanied by a decrease of NMDAR clusters and impairment of long-term potentiation. All antibody-mediated pathogenic effects (memory, synaptic NMDAR, long-term potentiation) were prevented in the animals treated with SGE-301, despite this compound not antagonizing antibody binding. Additional investigations on the potential mechanisms related to these SGE-301 effects showed that (i) in cultured neurons SGE-301 prolonged the decay time of NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged open time of the channel; and (ii) it significantly decreased, without fully preventing, the internalization of antibody-bound receptors suggesting that additional, yet unclear mechanisms, contribute in keeping unchanged the surface NMDAR density. Overall, these findings suggest that SGE-301, or similar NMDAR modulators, could potentially serve as complementary treatment for anti-NMDAR encephalitis and deserve future investigations.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/metabolismo , Encefalite Antirreceptor de N-Metil-D-Aspartato/terapia , Autoanticorpos/administração & dosagem , Autoanticorpos/líquido cefalorraquidiano , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
3.
J Neurosci ; 38(13): 3218-3229, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29476014

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENT Anti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.


Assuntos
Encefalite/líquido cefalorraquidiano , Doença de Hashimoto/líquido cefalorraquidiano , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Adulto , Regulação Alostérica , Animais , Linhagem Celular , Células Cultivadas , Encefalite/tratamento farmacológico , Encefalite/imunologia , Feminino , Doença de Hashimoto/tratamento farmacológico , Doença de Hashimoto/imunologia , Humanos , Masculino , Camundongos , Neurotransmissores/líquido cefalorraquidiano , Neurotransmissores/imunologia , Neurotransmissores/uso terapêutico , Transporte Proteico , Ratos , Receptores de N-Metil-D-Aspartato/imunologia
4.
J Neurophysiol ; 113(1): 116-31, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25253471

RESUMO

Benzodiazepine drugs, through interaction with GABA(Aα1), GABA(Aα2,3), and GABA(Aα5) subunits, modulate cortical network oscillations, as reflected by a complex signature in the EEG power spectrum. Recent drug discovery efforts have developed GABA(Aα2,3)-subunit-selective partial modulators in an effort to dissociate the side effect liabilities from the efficacy imparted by benzodiazepines. Here, we evaluated rat EEG and behavioral end points during dosing of nine chemically distinct compounds that we confirmed statistically to selectively to enhance GABA(Aα2,3)-mediated vs. GABA(Aα1) or GABA(Aα5) currents in voltage clamped oocytes transfected with those GABA(A) subunits. These compounds were shown with in vivo receptor occupancy techniques to competitively displace [(3)H]flumazenil in multiple brain regions following peripheral administration at increasing doses. Over the same dose range, the compounds all produced dose-dependent EEG spectral power increases in the ß- and and γ-bands. Finally, the dose range that increased γ-power coincided with that eliciting punished over unpunished responding in a behavioral conflict model of anxiety, indicative of anxiolysis without sedation. EEG γ-band power increases showed a significant positive correlation to in vitro GABA(Aα2,3) modulatory intrinsic activity across the compound set, further supporting a hypothesis that this EEG signature was linked specifically to pharmacological modulation of GABA(Aα2,3) signaling. These findings encourage further evaluation of this EEG signature as a noninvasive clinical translational biomarker that could ultimately facilitate development of GABA(Aα2,3)-subtype-selective drugs for anxiety and potentially other indications.


Assuntos
Ansiolíticos/farmacologia , Ritmo beta/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , GABAérgicos/farmacologia , Ritmo Gama/efeitos dos fármacos , Animais , Ansiolíticos/farmacocinética , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Ritmo beta/fisiologia , Encéfalo/fisiopatologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Conflito Psicológico , Relação Dose-Resposta a Droga , Eletrodos Implantados , Eletroencefalografia , GABAérgicos/farmacocinética , Ritmo Gama/fisiologia , Modelos Lineares , Masculino , Técnicas de Patch-Clamp , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo
5.
J Huntingtons Dis ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39269850

RESUMO

Background: There is evidence for dysregulated cholesterol homeostasis in Huntington's disease (HD). The brain-specific cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-OHC) is decreased in manifest HD. 24(S)-OHC is an endogenous positive allosteric modulator (PAM) of the N-methyl-D-aspartate (NMDA) receptor, suggesting lower 24(S)-OHC may contribute to NMDA receptor hypofunction in HD. We hypothesized changes in 24(S)-OHC would be associated with cognitive impairment in early HD. Objective: To determine the interactions between oxysterols (24(S)-OHC, 25-OHC, and 27-OHC) at the NMDA receptor, the plasma levels of these oxysterols, and how these levels relate to cognitive performance. Methods: An in vitro competition assay was used to evaluate interactions at the NMDA receptor, liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was used to measure plasma 24(S)-OHC, 25-OHC, and 27-OHC levels, and correlation analyses investigated their relationship to performance on cognitive endpoints in TRACK and ENROLL-HD (NCT01574053). Results: In vitro, 25-OHC and 27-OHC attenuated the PAM activity of 24(S)-OHC on the NMDA receptor. Lower plasma 24(S)-OHC levels and 24(S)/25-OHC ratios were detected in participants with early HD. Moderate and consistent associations were detected between plasma 24(S)/25-OHC ratio and performance on Stroop color naming, symbol digit modality, Trails A/B, and emotion recognition. Little association was observed between the ratio and psychiatric or motor endpoints, suggesting specificity for the relationship to cognitive performance. Conclusions: Our findings support growing evidence for dysregulated CNS cholesterol homeostasis in HD, demonstrate a relationship between changes in oxysterols and cognitive performance in HD, and propose that NMDA receptor hypofunction may contribute to cognitive impairment in HD.

6.
Br J Pharmacol ; 181(7): 1028-1050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37698384

RESUMO

BACKGROUND AND PURPOSE: Select neuroactive steroids tune neural activity by modulating excitatory and inhibitory neurotransmission, including the endogenous cholesterol metabolite 24(S)-hydroxycholesterol (24(S)-HC), which is an N-methyl-d-aspartate (NMDA) receptor positive allosteric modulator (PAM). NMDA receptor PAMs are potentially an effective pharmacotherapeutic strategy to treat conditions associated with NMDA receptor hypofunction. EXPERIMENTAL APPROACH: Using in vitro and in vivo electrophysiological recording experiments and behavioural approaches, we evaluated the effect of SAGE-718, a novel neuroactive steroid NMDA receptor PAM currently in clinical development for the treatment of cognitive impairment, on NMDA receptor function and endpoints that are altered by NMDA receptor hypoactivity and assessed its safety profile. KEY RESULTS: SAGE-718 potentiated GluN1/GluN2A-D NMDA receptors with equipotency and increased NMDA receptor excitatory postsynaptic potential (EPSP) amplitude without affecting decay kinetics in striatal medium spiny neurons. SAGE-718 increased the rate of unblock of the NMDA receptor open channel blocker ketamine on GluN1/GluN2A in vitro and accelerated the rate of return on the ketamine-evoked increase in gamma frequency band power, as measured with electroencephalogram (EEG), suggesting that PAM activity is driven by increased channel open probability. SAGE-718 ameliorated deficits due to NMDA receptor hypofunction, including social deficits induced by subchronic administration of phencyclidine, and behavioural and electrophysiological deficits from cholesterol and 24(S)-HC depletion caused by 7-dehydrocholesterol reductase inhibition. Finally, SAGE-718 did not produce epileptiform activity in a seizure model or neurodegeneration following chronic dosing. CONCLUSIONS AND IMPLICATIONS: These findings provide strong evidence that SAGE-718 is a neuroactive steroid NMDA receptor PAM with a mechanism that is well suited as a treatment for conditions associated with NMDA receptor hypofunction.


Assuntos
Ketamina , Neuroesteroides , Receptores de N-Metil-D-Aspartato/metabolismo , Ketamina/farmacologia , Hidroxicolesteróis/farmacologia , Colesterol , Regulação Alostérica
7.
Biol Psychiatry ; 91(3): 283-293, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561029

RESUMO

BACKGROUND: Brexanolone (allopregnanolone) was recently approved by the Food and Drug Administration for the treatment of postpartum depression, demonstrating long-lasting antidepressant effects. Despite our understanding of the mechanism of action of neurosteroids as positive allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors, we still do not fully understand how allopregnanolone exerts persistent antidepressant effects. METHODS: We used electroencephalogram recordings in rats and humans along with local field potential, functional magnetic resonance imaging, and behavioral tests in mice to assess the impact of neurosteroids on network states in brain regions implicated in mood and used optogenetic manipulations to directly examine their relationship to behavioral states. RESULTS: We demonstrated that allopregnanolone and synthetic neuroactive steroid analogs with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound] and zuranolone [SAGE-217, investigational compound]) modulate oscillations across species. We further demonstrated a critical role for interneurons in generating oscillations in the basolateral amygdala (BLA) and a role for δ-containing GABAA receptors in mediating the ability of neurosteroids to modulate network and behavioral states. Allopregnanolone in the BLA enhances BLA high theta oscillations (6-12 Hz) through δ-containing GABAA receptors, a mechanism distinct from other GABAA positive allosteric modulators, such as benzodiazepines, and alters behavioral states. Treatment with the allopregnanolone analog SGE-516 protects mice from chronic stress-induced disruption of network and behavioral states, which is correlated with the modulation of theta oscillations in the BLA. Optogenetic manipulation of the network state influences the behavioral state after chronic unpredictable stress. CONCLUSIONS: Our findings demonstrate a novel molecular and cellular mechanism mediating the well-established anxiolytic and antidepressant effects of neuroactive steroids.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Pregnanolona , Animais , Antidepressivos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Feminino , Moduladores GABAérgicos , Camundongos , Pregnanolona/farmacologia , Ratos , Receptores de GABA-A/metabolismo
8.
J Med Chem ; 65(13): 9063-9075, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35785990

RESUMO

N-Methyl-d-aspartate receptor (NMDAR) positive allosteric modulators (PAMs) have received increased interest as a powerful mechanism of action to provide relief as therapies for CNS disorders. Sage Therapeutics has previously published the discovery of endogenous neuroactive steroid 24(S)-hydroxycholesterol as an NMDAR PAM. In this article, we detail the discovery of development candidate SAGE-718 (5), a potent and high intrinsic activity NMDAR PAM with an optimized pharmacokinetic profile for oral dosing. Compound 5 has completed phase 1 single ascending dose and multiple ascending dose clinical trials and is currently undergoing phase 2 clinical trials for treatment of cognitive impairment in Huntington's disease.


Assuntos
Doenças do Sistema Nervoso Central , Disfunção Cognitiva , Neuroesteroides , Regulação Alostérica , Disfunção Cognitiva/tratamento farmacológico , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Neurosci ; 30(49): 16475-84, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21147987

RESUMO

The significance of the mismatch negativity (MMN), an event-related potential measured in humans which indexes novelty in the auditory environment, has motivated a search for a cellular correlate of this process. A leading candidate is stimulus-specific adaptation (SSA) in auditory cortex units, which shares several characteristics with the MMN. Whether auditory cortex responses encode sensory novelty, a defining property of the MMN, however, has not been resolved. To evaluate this key issue, we used several variations of the auditory oddball paradigm from the human literature and examined psychophysical and pharmacological properties of multiunit activity in the auditory cortex of awake rodents. We found converging evidence dissociating SSA from sensory novelty and the MMN. First, during an oddball paradigm with frequency deviants, neuronal responses showed clear SSA but failed to encode novelty in a manner analogous to the human MMN. Second, oddball paradigms using intensity or duration deviants revealed a pattern of unit responses that showed sensory adaptation, but again without any measurable novelty correlates aligning to the human MMN. Finally NMDA antagonists, which are known to disrupt the MMN, suppressed the magnitude of multiunit responses in a nonspecific manner, leaving the process of SSA intact. Together, our results suggest that auditory novelty detection as indexed by the MMN is dissociable from SSA at the level of activity encoded by auditory cortex neurons. Further, the NMDA sensitivity reported for the MMN, which models the disruption of MMN observed in schizophrenia, may occur at a mechanistic locus outside of SSA.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Variação Contingente Negativa/fisiologia , Potenciais Evocados Auditivos/fisiologia , N-Metilaspartato/metabolismo , Estimulação Acústica/métodos , Adaptação Fisiológica/efeitos dos fármacos , Análise de Variância , Animais , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Variação Contingente Negativa/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Psicoacústica , Ratos , Roedores , Vigília/fisiologia
10.
Neuron ; 51(4): 495-507, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16908414

RESUMO

The orbitofrontal cortex (OFC) is thought to participate in making and evaluating goal-directed decisions. In rodents, spatial navigation is a major mode of goal-directed behavior, and anatomical and lesion studies implicate the OFC in spatial processing, but there is little direct evidence for coding of spatial or motor variables. Here, we recorded from ventrolateral and lateral OFC in an odor-cued two-alternative choice task requiring orientation and approach to spatial goal ports. In this context, over half of OFC neurons encoded choice direction or goal port location. A subset of neurons was jointly selective for the trial outcome and port location, information useful for the selection or evaluation of spatial goals. These observations show that the rodent OFC not only encodes information relating to general motivational significance, as shown previously, but also encodes spatiomotor variables needed to define specific behavioral goals and the locomotor actions required to attain them.


Assuntos
Lobo Frontal/fisiologia , Objetivos , Orientação/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Sinais (Psicologia) , Aprendizagem por Discriminação/fisiologia , Lobo Frontal/citologia , Movimento/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Curva ROC , Ratos , Tempo de Reação , Recompensa , Fatores de Tempo
11.
J Neurosci ; 29(45): 14271-86, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19906975

RESUMO

M(1) muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, benzylquinolone carboxylic acid (BQCA), which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M(1) receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M(1) receptor affinity for acetylcholine. We found that activation of the M(1) receptor by BQCA induces a robust inward current and increases spontaneous EPSCs in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M(1) receptor knock-out mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M(1) receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M(1) receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M(1) mAChR subtype may ameliorate impairments in cognitive function.


Assuntos
Ácidos Carboxílicos/farmacologia , Colinérgicos/farmacologia , Deficiências da Aprendizagem/tratamento farmacológico , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Quinolonas/farmacologia , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Técnicas In Vitro , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/metabolismo , Reversão de Aprendizagem/fisiologia
12.
Neuropharmacology ; 181: 108333, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32976892

RESUMO

Zuranolone (SAGE-217) is a novel, synthetic, clinical stage neuroactive steroid GABAA receptor positive allosteric modulator designed with the pharmacokinetic properties to support oral daily dosing. In vitro, zuranolone enhanced GABAA receptor current at nine unique human recombinant receptor subtypes, including representative receptors for both synaptic (γ subunit-containing) and extrasynaptic (δ subunit-containing) configurations. At a representative synaptic subunit configuration, α1ß2γ2, zuranolone potentiated GABA currents synergistically with the benzodiazepine diazepam, consistent with the non-competitive activity and distinct binding sites of the two classes of compounds at synaptic receptors. In a brain slice preparation, zuranolone produced a sustained increase in GABA currents consistent with metabotropic trafficking of GABAA receptors to the cell surface. In vivo, zuranolone exhibited potent activity, indicating its ability to modulate GABAA receptors in the central nervous system after oral dosing by protecting against chemo-convulsant seizures in a mouse model and enhancing electroencephalogram ß-frequency power in rats. Together, these data establish zuranolone as a potent and efficacious neuroactive steroid GABAA receptor positive allosteric modulator with drug-like properties and CNS exposure in preclinical models. Recent clinical data support the therapeutic promise of neuroactive steroid GABAA receptor positive modulators for treating mood disorders; brexanolone is the first therapeutic approved specifically for the treatment of postpartum depression. Zuranolone is currently under clinical investigation for the treatment of major depressive episodes in major depressive disorder, postpartum depression, and bipolar depression.


Assuntos
Anticonvulsivantes/farmacologia , Moduladores GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Pregnanos/farmacologia , Pirazóis/farmacologia , Esteroides/farmacologia , Animais , Anticonvulsivantes/farmacocinética , Antidepressivos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diazepam/farmacologia , Sinergismo Farmacológico , Eletroencefalografia/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pregnanos/farmacocinética , Pirazóis/farmacocinética , Ratos Sprague-Dawley , Receptores de GABA/efeitos dos fármacos , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Ácido gama-Aminobutírico/fisiologia
13.
J Med Chem ; 62(16): 7526-7542, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31390523

RESUMO

Neuroactive steroids (NASs) play a pivotal role in maintaining homeostasis is the CNS. We have discovered that one NAS in particular, 24(S)-hydroxycholesterol (24(S)-HC), is a positive allosteric modulator (PAM) of NMDA receptors. Using 24(S)-HC as a chemical starting point, we have identified other NASs that have good in vitro potency and efficacy. Herein, we describe the structure activity relationship and pharmacokinetic optimization of this series that ultimately led to SGE-301 (42). We demonstrate that SGE-301 enhances long-term potentiation (LTP) in rat hippocampal slices and, in a dose-dependent manner, improves cognition in a rat social recognition study.


Assuntos
Regulação Alostérica , Neuroesteroides/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores Etários , Animais , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Metilação , Estrutura Molecular , Neuroesteroides/química , Neuroesteroides/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade
14.
Neuron ; 38(2): 305-15, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12718863

RESUMO

Lesion and pharmacological intervention studies have suggested that in both human patients and animals the hippocampus plays a crucial role in the rapid acquisition and storage of information from a novel one-time experience. However, how the hippocampus plays this role is poorly known. Here, we show that mice with NMDA receptor (NR) deletion restricted to CA3 pyramidal cells in adulthood are impaired in rapidly acquiring the memory of novel hidden platform locations in a delayed matching-to-place version of the Morris water maze task but are normal when tested with previously experienced platform locations. CA1 place cells in the mutant animals had place field sizes that were significantly larger in novel environments, but normal in familiar environments relative to those of control mice. These results suggest that CA3 NRs play a crucial role in rapid hippocampal encoding of novel information for fast learning of one-time experience.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/fisiologia , Animais , Eletrodos Implantados , Comportamento Exploratório/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/fisiologia , Aprendizagem em Labirinto/fisiologia , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética
15.
Neuropsychopharmacology ; 42(4): 844-853, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27681442

RESUMO

The objective of this study was to investigate the efficacy and safety of adjunctive lanicemine (NMDA channel blocker) in the treatment of major depressive disorder (MDD) over 12 weeks. This phase IIb, randomized, parallel-arm, double-blind, placebo-controlled study was conducted at 49 centers in four countries between December 2011 and August 2013 in 302 patients aged 18-70 years, meeting criteria for single episode or recurrent MDD and with a history of inadequate treatment response. Patients were required to be taking an allowed antidepressant for at least four weeks prior to screening. Patients were randomized equally to receive 15 double-blind intravenous infusions of adjunctive lanicemine 50 mg, lanicemine 100 mg, or saline over a 12-week course, in addition to ongoing antidepressant. The primary efficacy end point was change in Montgomery-Åsberg Depression Rating Scale (MADRS) total score from baseline to week 6. Secondary efficacy outcome variables included change in MADRS score from baseline to week 12, response and remission rates, and changes in Clinical Global Impression scale, Quick Inventory of Depressive Symptomology Self-Report score, and Sheehan Disability Scale score. Of 302 randomized patients, 240 (79.5%) completed treatment. Although lanicemine was generally well tolerated, neither dose was superior to placebo in reducing depressive symptoms on the primary end point or any secondary measures. There was no significant difference between lanicemine and placebo treatment on any outcome measures related to MDD. Post hoc analyses were performed to explore the possible effects of trial design and patient characteristics in accounting for the contrasting results with a previously reported trial.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Fenetilaminas/farmacologia , Piridinas/farmacologia , Adulto , Antidepressivos/administração & dosagem , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenetilaminas/administração & dosagem , Piridinas/administração & dosagem
16.
J Behav Health Serv Res ; 42(4): 504-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24464179

RESUMO

To effectively implement evidence-based practices (EBP) in behavioral health care, an organization needs to have operating structures and processes that can address core EBP implementation factors and stages. Lean, a widely used quality improvement process, can potentially address the factors crucial to successful implementation of EBP. This article provides an overview of Lean and the relationship between Lean process improvement steps, and EBP implementation models. Examples of how Lean process improvement methodologies can be used to help plan and carry out implementation of EBP in mental health delivery systems are presented along with limitations and recommendations for future research and clinical application.


Assuntos
Atenção à Saúde/organização & administração , Prática Clínica Baseada em Evidências/organização & administração , Transtornos Mentais/terapia , Serviços de Saúde Mental/organização & administração , Melhoria de Qualidade/organização & administração , Humanos
17.
Front Syst Neurosci ; 3: 13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20057934

RESUMO

Orbitofrontal cortex (OFC) is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS) interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC-FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states.

18.
Biochem Pharmacol ; 78(7): 880-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19615981

RESUMO

AZD0328, a novel spirofuropyridine neuronal nicotinic receptor partial agonist, was used to investigate the role of alpha7 neuronal nicotinic receptor (NNR) activation in the modulation of midbrain dopamine neuron function, cortical dopamine release and on two behavioral tasks known to be dependent on optimal levels of cortical dopamine. In vivo recordings from area 10 (ventral tegmental area) in rat brain showed an increased firing of putative dopamine neurons in response to low (0.00138 mg/kg) doses of AZD0328. Bursting patterns of dopamine neuron activity remained largely unchanged by application of AZD0328. In vivo microdialysis in awake rats showed an increase in extracellular prefrontal cortical dopamine in response to low doses of AZD0328. Compound-stimulated dopamine release showed an inverted dose effect relation that was maximal at the lowest dose tested (0.00178 mg/kg). Peak extracellular dopamine levels were reached 2h after dosing with AZD0328. Acquisition of operant responding with delayed reinforcement in rats was dose dependently enhanced by AZD0328 with a plateau effect measured at 0.003 mg/kg. This effect was blocked by pre-treatment of animals with the selective alpha7 antagonist methyllycaconitine. AZD0328 improved novel object recognition in mice over a broad range of doses (0.00178-1.78 mg/kg) and the compound effect was found to be absent in homozygous alpha7 KO animals. Together, these data indicate that selective interaction with alpha7 NNRs by AZD0328 selectively enhances midbrain dopaminergic neuronal activity causing an enhancement of cortical dopamine levels; these neurochemical changes likely, underlie the positive behavioral responses observed in two different animal models. Our results suggest selective alpha7 NNR agonists may have significant therapeutic utility in neurologic and psychiatric indications where cognitive deficits and dopamine neuron dysfunction co-exist.


Assuntos
Atenção/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Dopamina/metabolismo , Furanos/farmacologia , Aprendizagem/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Quinuclidinas/farmacologia , Receptores Nicotínicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular , Córtex Cerebral/metabolismo , Condicionamento Operante/efeitos dos fármacos , Feminino , Humanos , Masculino , Neurônios/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Reforço Psicológico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
19.
J Pers Assess ; 89(2): 95-104, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17764387

RESUMO

This article addresses the role of personality assessment-specifically the Rorschach (Exner, 2002)-]in the context of the health care industry's increased focus on patient satisfaction. When providing psychotherapy, a challenge to providing patient-centered care turns on understanding and acting on the key aspects of the patient's personality that are crucial to forming an effective alliance. This article includes a description and examples of how personality assessment can enhance therapists' understanding of the ideational, affective, and self-control aspects of complicated patients' problem-solving styles. This enhanced understanding in turn can lead to improved therapeutic alliance between therapists and patients and to increased patient satisfaction with their care. How to provide feedback to the therapist also is addressed.


Assuntos
Transtornos Mentais/diagnóstico , Transtornos Mentais/terapia , Satisfação do Paciente , Determinação da Personalidade , Relações Profissional-Paciente , Humanos , Escalas de Graduação Psiquiátrica , Psicoterapia Breve/métodos , Índice de Gravidade de Doença , Resultado do Tratamento
20.
Neural Comput ; 16(2): 277-307, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15006097

RESUMO

Neural spike train decoding algorithms and techniques to compute Shannon mutual information are important methods for analyzing how neural systems represent biological signals. Decoding algorithms are also one of several strategies being used to design controls for brain-machine interfaces. Developing optimal strategies to design decoding algorithms and compute mutual information are therefore important problems in computational neuroscience. We present a general recursive filter decoding algorithm based on a point process model of individual neuron spiking activity and a linear stochastic state-space model of the biological signal. We derive from the algorithm new instantaneous estimates of the entropy, entropy rate, and the mutual information between the signal and the ensemble spiking activity. We assess the accuracy of the algorithm by computing, along with the decoding error, the true coverage probability of the approximate 0.95 confidence regions for the individual signal estimates. We illustrate the new algorithm by reanalyzing the position and ensemble neural spiking activity of CA1 hippocampal neurons from two rats foraging in an open circular environment. We compare the performance of this algorithm with a linear filter constructed by the widely used reverse correlation method. The median decoding error for Animal 1 (2) during 10 minutes of open foraging was 5.9 (5.5) cm, the median entropy was 6.9 (7.0) bits, the median information was 9.4 (9.4) bits, and the true coverage probability for 0.95 confidence regions was 0.67 (0.75) using 34 (32) neurons. These findings improve significantly on our previous results and suggest an integrated approach to dynamically reading neural codes, measuring their properties, and quantifying the accuracy with which encoded information is extracted.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Comportamento Exploratório/fisiologia , Redes Neurais de Computação , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Processos Estocásticos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA