Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Plant J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923649

RESUMO

Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.

2.
Ecotoxicol Environ Saf ; 269: 115807, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091673

RESUMO

Plastics have revolutionised human industries, thanks to their versatility and durability. However, their extensive use, coupled with inadequate waste disposal, has resulted in plastic becoming ubiquitous in every environmental compartment, posing potential risks to the economy, human health and the environment. Additionally, under natural conditions, plastic waste breaks down into microplastics (MPs<5 mm). The increasing quantity of MPs exerts a significant burden on the soil environment, particularly in agroecosystems, presenting a new stressor for soil-dwelling organisms. In this review, we delve into the effects of MP pollution on soil ecosystems, with a specific attention to (a) MP transport to soils, (b) potential changes of MPs under environmental conditions, (c) and their interaction with the physical, chemical and biological components of the soil. We aim to shed light on the alterations in the distribution, activity, physiology and growth of soil flora, fauna and microorganisms in response to MPs, offering an ecotoxicological perspective for environmental risk assessment of plastics. The effects of MPs are strongly influenced by their intrinsic traits, including polymer type, shape, size and abundance. By exploring the multifaceted interactions between MPs and the soil environment, we provide critical insights into the consequences of plastic contamination. Despite the growing body of research, there remain substantial knowledge gaps regarding the long-term impact of MPs on the soil. Our work underscores the importance of continued research efforts and the adoption of standardised approaches to address plastic pollution and ensure a sustainable future for our planet.


Assuntos
Ecossistema , Solo , Humanos , Plásticos/química , Monitoramento Ambiental , Poluição Ambiental/efeitos adversos
3.
Appl Microbiol Biotechnol ; 107(20): 6315-6324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610465

RESUMO

The biomethane formation from 4 H2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H2/CO2 trigger although this methanogen also converted H2/CO2 to CH4. From practical points of view, the regulatory function of H2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient. KEY POINTS : • Hydrogenotrophic methanogens may respond distinctly to H2/CO2 in bio-CH4 formation. • H2/CO2 can also activate metabolic routes, which are apparently unrelated to methanogenesis. • Sustainable conversion of the fluctuating renewable electricity to bio-CH4 is an option.

4.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903505

RESUMO

Cytochrome b561 proteins (CYB561s) are integral membrane proteins with six trans-membrane domains, two heme-b redox centers, one on each side of the host membrane. The major characteristics of these proteins are their ascorbate reducibility and trans-membrane electron transferring capability. More than one CYB561 can be found in a wide range of animal and plant phyla and they are localized in membranes different from the membranes participating in bioenergization. Two homologous proteins, both in humans and rodents, are thought to participate-via yet unidentified way-in cancer pathology. The recombinant forms of the human tumor suppressor 101F6 protein (Hs_CYB561D2) and its mouse ortholog (Mm_CYB561D2) have already been studied in some detail. However, nothing has yet been published about the physical-chemical properties of their homologues (Hs_CYB561D1 in humans and Mm_CYB561D1 in mice). In this paper we present optical, redox and structural properties of the recombinant Mm_CYB561D1, obtained based on various spectroscopic methods and homology modeling. The results are discussed in comparison to similar properties of the other members of the CYB561 protein family.


Assuntos
Ácido Ascórbico , Elétrons , Humanos , Animais , Camundongos , Oxirredução , Transporte de Elétrons , Ácido Ascórbico/metabolismo , Proteínas Recombinantes/metabolismo
5.
Appl Microbiol Biotechnol ; 106(22): 7505-7517, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219222

RESUMO

Monotopic membrane-bound flavoproteins, sulfide:quinone oxidoreductases (SQRs), have a variety of physiological functions, including sulfide detoxification. SQR enzymes are classified into six groups. SQRs use the flavin adenine dinucleotide (FAD) cofactor to transfer electrons from sulfide to quinone. A type VI SQR of the photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina (TrSqrF), has been previously characterized, and the mechanism of sulfide oxidation has been proposed. This paper reports the characterization of quinone binding site (QBS) of TrSqrF composed of conserved aromatic and apolar amino acids. Val331, Ile333, and Phe366 were identified near the benzoquinone ring of enzyme-bound decylubiquinone (dUQ) using the TrSqrF homology model. In silico analysis revealed that Val331 and Ile333 alternately connected with the quinone head group via hydrogen bonds, and Phe366 and Trp369 bound the quinones via hydrophobic interactions. TrSqrF variants containing alanine (V331A, I333A, F366A) and aromatic amino acid (V331F, I333F, F366Y), as well as a C-terminal α-helix deletion (CTD) mutant were generated. These amino acids are critical for quinone binding and, thus, catalysis. Spectroscopic analyses proved that all mutants contained FAD. I333F replacement resulted in the lack of the charge transfer complex. In summary, the interactions described above maintain the quinone molecule's head in an optimal position for direct electron transfer from FAD. Surprisingly, the CTD mutant retained a relatively high level of specific activity while remaining membrane-anchored. This is a unique study because it focuses on the QBS and the oxidative stage of a type VI sulfide-dependent quinone reduction. KEY POINTS: • V331, I333, F366, and W369 were shown to interact with decylubiquinone in T. roseopersicina SqrF • These amino acids are involved in proper positioning of quinones next to FAD • I333 is essential in formation of a charge transfer complex from FAD to quinone.


Assuntos
Flavina-Adenina Dinucleotídeo , Quinona Redutases , Quinona Redutases/genética , Quinona Redutases/metabolismo , Sulfetos/metabolismo , Benzoquinonas , Sítios de Ligação , Oxirredução , Aminoácidos/metabolismo
6.
Microb Cell Fact ; 20(1): 127, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217274

RESUMO

BACKGROUND: The molecular machinery of the complex microbiological cell factory of biomethane production is not fully understood. One of the process control elements is the regulatory role of hydrogen (H2). Reduction of carbon dioxide (CO2) by H2 is rate limiting factor in methanogenesis, but the community intends to keep H2 concentration low in order to maintain the redox balance of the overall system. H2 metabolism in methanogens becomes increasingly important in the Power-to-Gas renewable energy conversion and storage technologies. RESULTS: The early response of the mixed mesophilic microbial community to H2 gas injection was investigated with the goal of uncovering the first responses of the microbial community in the CH4 formation and CO2 mitigation Power-to-Gas process. The overall microbial composition changes, following a 10 min excessive bubbling of H2 through the reactor, was investigated via metagenome and metatranscriptome sequencing. The overall composition and taxonomic abundance of the biogas producing anaerobic community did not change appreciably 2 hours after the H2 treatment, indicating that this time period was too short to display differences in the proliferation of the members of the microbial community. There was, however, a substantial increase in the expression of genes related to hydrogenotrophic methanogenesis of certain groups of Archaea. As an early response to H2 exposure the activity of the hydrogenotrophic methanogenesis in the genus Methanoculleus was upregulated but the hydrogenotrophic pathway in genus Methanosarcina was downregulated. The RT-qPCR data corroborated the metatranscriptomic RESULTS: H2 injection also altered the metabolism of a number of microbes belonging in the kingdom Bacteria. Many Bacteria possess the enzyme sets for the Wood-Ljungdahl pathway. These and the homoacetogens are partners for syntrophic community interactions between the distinct kingdoms of Archaea and Bacteria. CONCLUSIONS: External H2 regulates the functional activity of certain Bacteria and Archaea. The syntrophic cross-kingdom interactions in H2 metabolism are important for the efficient operation of the Power-to-Gas process. Therefore, mixed communities are recommended for the large scale Power-to-Gas process rather than single hydrogenotrophic methanogen strains. Fast and reproducible response from the microbial community can be exploited in turn-off and turn-on of the Power-to-Gas microbial cell factories.


Assuntos
Hidrogênio/metabolismo , Metano/biossíntese , Methanomicrobiaceae/metabolismo , Methanosarcina/metabolismo , Transcriptoma , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Fermentação , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Metagenoma , Metagenômica , Methanomicrobiaceae/genética , Methanosarcina/genética , Microbiota
7.
Plant J ; 94(3): 548-561, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474754

RESUMO

Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Enxofre/deficiência , Hidrogenase/metabolismo , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/metabolismo
8.
Appl Microbiol Biotechnol ; 102(12): 5133-5147, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680900

RESUMO

Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.


Assuntos
Bacteroides/enzimologia , Quinona Redutases/metabolismo , Bacteroides/classificação , Regulação Bacteriana da Expressão Gênica , Oxirredução , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfetos/metabolismo
9.
Appl Microbiol Biotechnol ; 102(1): 305-318, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29051988

RESUMO

Novosphingobium resinovorum SA1 was the first single isolate capable of degrading sulfanilic acid, a widely used representative of sulfonated aromatic compounds. The genome of the strain was recently sequenced, and here, we present whole-cell transcriptome analyses of cells exposed to sulfanilic acid as compared to cells grown on glucose. The comparison of the transcript profiles suggested that the primary impact of sulfanilic acid on the cell transcriptome was a starvation-like effect. The genes of the peripheral, central, and common pathways of sulfanilic acid biodegradation had distinct transcript profiles. The peripheral genes located on a plasmid had very high basal expressions which were hardly upregulated by sulfanilic acid. The genomic context and the codon usage preference of these genes suggested that they were acquired by horizontal gene transfer. The genes of the central pathways were remarkably inducible by sulfanilic acid indicating the presence of a substrate-specific regulatory system in the cells. Surprisingly, the genes of the common part of the metabolic pathway had low and sulfanilic acid-independent transcript levels. The approach applied resulted in the identification of the genes of proteins involved in auxiliary processes such as electron transfer, substrate and iron transports, sulfite oxidases, and sulfite transporters. The whole transcriptome analysis revealed that the cells exposed to xenobiotics had multiple responses including general starvation-like, substrate-specific, and substrate-related effects. From the results, we propose that the genes of the peripheral, central, and common parts of the pathway have been evolved independently.


Assuntos
Sphingomonadaceae/genética , Ácidos Sulfanílicos/metabolismo , Transcriptoma , Xenobióticos , Biodegradação Ambiental , Perfilação da Expressão Gênica , Genômica , Sphingomonadaceae/metabolismo
10.
Anaerobe ; 52: 1-8, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803739

RESUMO

Most photosynthetic organisms store and convert solar energy in an aerobic process and produce biomass for various uses. Utilization of biomass for the production of renewable energy carriers employs anaerobic conditions. This review focuses on microalgal biomass and its use for biological hydrogen and methane production. Microalgae offer several advantages compared to terrestrial plants. Strategies to maintain anaerobic environment for biohydrogen production are summarized. Efficient biogas production via anaerobic digestion is significantly affected by the biomass composition, pretreatment strategies and the parameters of the digestion process. Coupled biohydrogen and biogas production increases the efficiency and sustainability of renewable energy production.


Assuntos
Biocombustíveis/análise , Hidrogênio/metabolismo , Metano/biossíntese , Microalgas/metabolismo , Anaerobiose , Biomassa , Microalgas/crescimento & desenvolvimento
11.
Microb Ecol ; 73(2): 368-377, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27628741

RESUMO

Bordetella bronchiseptica is a well-known etiological agent of kennel cough in dogs and cats and one of the two causative agents of atrophic rhinitis, a serious swine disease. The aim of the study was to isolate B. bronchiseptica bacteriophages from environmental samples for the first time. A total of 29 phages from 65 water samples were isolated using the strain ATCC 10580 as a host. The lytic spectra of the phages were examined at 25 and 37 °C, using 12 strains of B. bronchiseptica. All phages were able to plaque on 25.0 % to 41.7 % of the strains. The selected phages showed similar morphology (Siphoviridae, morphotype B2), but variation of RFLP patterns and efficacy of plating on various strains. The partial genome sequence of phage vB_BbrS_CN1 showed its similarity to phages from genus Yuavirus. Using PCR, it was confirmed that the phages do not originate from the host strain, and environmental origin was additionally confirmed by the analysis of host genome sequence in silico and plating heated and unheated samples in parallel. Accordingly, this is the first isolation of B. bronchiseptica phages from environment and the first isolation and characterization of phages of B. bronchiseptica belonging to family Siphoviridae.


Assuntos
Bacteriófagos/isolamento & purificação , Bordetella bronchiseptica/virologia , Meio Ambiente , Siphoviridae/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Sequência de Bases , Bordetella bronchiseptica/genética , DNA Bacteriano/genética , DNA Viral/genética , Genes Virais , Genoma Viral , Temperatura Alta , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Siphoviridae/genética , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/ultraestrutura , Águas Residuárias/virologia , Microbiologia da Água
12.
Anaerobe ; 46: 78-85, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28576713

RESUMO

Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 gvs/L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH4/gvs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield.


Assuntos
Biocombustíveis , Reatores Biológicos , Fermentação , Resíduos , Zea mays , Anaerobiose , Metano
13.
Anaerobe ; 46: 138-145, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28351698

RESUMO

Water extraction of raw chicken manure elevated the carbon-to-nitrogen ratio 2.7-fold, i.e. from 7.48 to 19.81. The treated chicken manure (T-CM) thus became suitable for biogas fermentation as monosubstrate. Improved methane production was achieved in co-fermentations with either maize silage (24% more methane) or corn stover (19% more methane) relative to T-CM monosubstrate. The standardized biogas potential assay indicated that the methane yields varied with the organic loading rate between 160 and 250 mL CH4/g organic total solid (oTS). Co-fermentation with maize silage was sustainable in continuous anaerobic digestion for at least 4 months.


Assuntos
Biocombustíveis , Fermentação , Esterco , Aves Domésticas , Zea mays , Anaerobiose , Animais , Biodegradação Ambiental , Reatores Biológicos , Biotransformação , Carbono , Galinhas , Nitrogênio
14.
Anaerobe ; 46: 104-113, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554814

RESUMO

Two stable, thermophilic mixed cellulolytic consortia were enriched from an industrial scale biogas fermenter. The two consortia, marked as AD1 and AD2, were used for bioaugmentation in laboratory scale batch reactors. They enhanced the methane yield by 22-24%. Next generation sequencing method revealed the main orders being Thermoanaerobacterales and Clostridiales and the predominant strains were Thermoanaerobacterium thermosaccharolyticum, Caldanaerobacter subterraneus, Thermoanaerobacter pseudethanolicus and Clostridium cellulolyticum. The effect of these strains, cultivated in pure cultures, was investigated with the aim of reconstructing the defined cellulolytic consortium. The addition of the four bacterial strains and their mixture to the biogas fermenters enhanced the methane yield by 10-11% but it was not as efficient as the original communities indicating the significant contribution by members of the enriched communities present in low abundance.


Assuntos
Anaerobiose , Biodegradação Ambiental , Biocombustíveis , Celulose , Zea mays/química , Zea mays/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos , Celulose/química , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Metagenômica/métodos
15.
Anaerobe ; 46: 13-22, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28341558

RESUMO

Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes. Particular emphasis is put on the biochemical conversion pathways involving methanotrophs and their methane monooxygenase-catalyzed reactions leading to various small molecules and polymeric materials such as extracellular polysaccharides, polyhydroxyalkanoates and proteins. c.) The third area covered concerns methane-consuming reactions and methane emission mitigation. These investigations comprise the anaerobic microbiology of ruminants and approaches to diminishing methane emissions from ruminant animals.


Assuntos
Biocombustíveis , Metano/biossíntese , Anaerobiose , Animais , Fenômenos Bioquímicos , Biotransformação , Dióxido de Carbono , Fermentação , Gases de Efeito Estufa , Humanos , Plantas/metabolismo , Energia Renovável
16.
Appl Environ Microbiol ; 82(7): 2039-2049, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801573

RESUMO

[NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrogenase/metabolismo , Thiocapsa roseopersicina/enzimologia , Tiossulfatos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Hidrogênio/metabolismo , Hidrogenase/genética , Thiocapsa roseopersicina/genética , Thiocapsa roseopersicina/metabolismo
17.
Plant Cell Environ ; 39(7): 1460-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26714836

RESUMO

In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.


Assuntos
Ácido Ascórbico/metabolismo , Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Enxofre/deficiência , Hidrogenase/metabolismo , Amido/metabolismo
18.
Appl Microbiol Biotechnol ; 100(16): 7001-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27401925

RESUMO

Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais , Eletrodos/microbiologia , Transporte de Elétrons
19.
Biochim Biophys Acta ; 1837(10): 1691-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111750

RESUMO

Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled.


Assuntos
Transporte de Elétrons , Hidrogenase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Thiocapsa roseopersicina/metabolismo , Biocatálise , Western Blotting , Prótons
20.
J Neurochem ; 134(6): 1040-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26112237

RESUMO

Tesmilifene, a tamoxifen analog with antihistamine action, has chemopotentiating properties in experimental and clinical cancer studies. In our previous works, tesmilifene increased the permeability of the blood-brain barrier (BBB) in animal and culture models. Our aim was to investigate the effects of tesmilifene on brain microvessel permeability in the rat RG2 glioma model and to reveal its mode of action in brain endothelial cells. Tesmilifene significantly increased fluorescein extravasation in the glioma. Short-term treatment with tesmilifene reduced the resistance and increased the permeability for marker molecules in a rat triple co-culture BBB model. Tesmilifene also affected the barrier integrity in brain endothelial cells co-cultured with RG2 glioblastoma cells. Tesmilifene inhibited the activity of P-glycoprotein and multidrug resistance-associated protein-1 efflux pumps and down-regulated the mRNA expression of tight junction proteins, efflux pumps, solute carriers, and metabolic enzymes important for BBB functions. Among the possible signaling pathways that regulate BBB permeability, tesmilifene activated the early nuclear translocation of NFκB. The MAPK/ERK and PI3K/Akt kinase pathways were also involved. We demonstrate for the first time that tesmilifene increases permeability marker molecule extravasation in glioma and inhibits efflux pump activity in brain endothelial cells, which may have therapeutic relevance. Tesmilifene, a chemopotentiator in experimental and clinical cancer studies increases vascular permeability in RG2 glioma in rats and permeability for marker molecules in a culture model of the blood-brain barrier. Tesmilifene inhibits the activity of efflux pumps and down-regulates the mRNA expression of tight junction proteins, transporters, and metabolic enzymes important for the blood-brain barrier functions, which may have therapeutic relevance.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/farmacologia , Éteres Fenílicos/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Glioma/patologia , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA