Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Plant Biol ; 22(1): 473, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199018

RESUMO

BACKGROUND: Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS: SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS: Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.


Assuntos
Arabidopsis , Eriobotrya , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Mol Biol ; 95(4-5): 507-517, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29038917

RESUMO

KEY MESSAGE: PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.


Assuntos
Metabolismo dos Carboidratos , Cromatina/genética , Prunus persica/genética , Sorbitol/metabolismo , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
3.
BMC Plant Biol ; 14: 52, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24559033

RESUMO

BACKGROUND: The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the perception of cumulative chilling and heat during the bud development. The objective of this work was to identify new quantitative trait loci (QTLs) associated to temperature requirements for bud dormancy release and flowering and to fruit harvest date, in a segregating population of peach. RESULTS: We have identified QTLs for nine traits related to bud dormancy, flowering and fruit harvest in an intraspecific hybrid population of peach in two locations differing in chilling time accumulation. QTLs were located in a genetic linkage map of peach based on single nucleotide polymorphism (SNP) markers for eight linkage groups (LGs) of the peach genome sequence. QTLs for chilling requirements for dormancy release and blooming clustered in seven different genomic regions that partially coincided with loci identified in previous works. The most significant QTL for chilling requirements mapped to LG1, close to the evergrowing locus. QTLs for heat requirement related traits were distributed in nine genomic regions, four of them co-localizing with QTLs for chilling requirement trait. Two major loci in LG4 and LG6 determined fruit harvest time. CONCLUSIONS: We identified QTLs associated to nine traits related to the reproductive phenology in peach. A search of candidate genes for these QTLs rendered different genes related to flowering regulation, chromatin modification and hormone signalling. A better understanding of the genetic factors affecting crop phenology might help scientists and breeders to predict changes in genotype performance in a context of global climate change.


Assuntos
Prunus/genética , Prunus/fisiologia , Locos de Características Quantitativas/genética , Ligação Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Reprodução/genética , Reprodução/fisiologia
4.
BMC Genomics ; 14: 40, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23331975

RESUMO

BACKGROUND: The outer cell wall of the pollen grain (exine) is an extremely resistant structure containing sporopollenin, a mixed polymer made up of fatty acids and phenolic compounds. The synthesis of sporopollenin in the tapetal cells and its proper deposition on the pollen surface are essential for the development of viable pollen. The beginning of microsporogenesis and pollen maturation in perennial plants from temperate climates, such as peach, is conditioned by the duration of flower bud dormancy. In order to identify putative genes involved in these processes, we analyzed the results of previous genomic experiments studying the dormancy-dependent gene expression in different peach cultivars. RESULTS: The expression of 50 genes induced in flower buds after the endodormancy period (flower-bud late genes) was compared in ten cultivars of peach with different dormancy behaviour. We found two co-expression clusters enriched in putative orthologs of sporopollenin synthesis and deposition factors in Arabidopsis. Flower-bud late genes were transiently expressed in anthers coincidently with microsporogenesis and pollen maturation processes. We postulated the participation of some flower-bud late genes in the sporopollenin synthesis pathway and the transcriptional regulation of late anther development in peach. CONCLUSIONS: Peach and the model plant Arabidopsis thaliana show multiple elements in common within the essential sporopollenin synthesis pathway and gene expression regulatory mechanisms affecting anther development. The transcriptomic analysis of dormancy-released flower buds proved to be an efficient procedure for the identification of anther and pollen development genes in perennial plants showing seasonal dormancy.


Assuntos
Biopolímeros/biossíntese , Carotenoides/biossíntese , Perfilação da Expressão Gênica , Genômica , Prunus/genética , Prunus/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Prunus/crescimento & desenvolvimento , Prunus/fisiologia , Reprodução , Transcrição Gênica , Regulação para Cima
5.
BMC Plant Biol ; 13: 129, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020638

RESUMO

BACKGROUND: Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidization. The study included comparisons of their ploidy, homozygosity, genome integrity, and gene dosage, using chromosome counting, flow cytometry, SSR marker genotyping, and array-Comparative Genomic Hybridization (array-CGH). RESULTS: Chromosome counting and flow cytometry revealed that ESP and FRA were haploid, but ITA was tri-haploid. Homozygous patterns, represented by a single peak (allele), were observed among the three plants at almost all SSR loci distributed across the entire diploid donor genome. Those few loci with extra peaks visualized as output from automated sequencing runs, generally low or ambiguous, might result from amplicons of paralogous members at the locus, non-specific sites, or unexpected recombinant alleles. No new alleles were found, suggesting the genomes remained stable and intact during gametogenesis and regeneration. The integrity of the haploid genome also was supported by array-CGH studies, in which genomic profiles were comparable to the diploid control. CONCLUSIONS: The presence of few gene hybridization abnormalities, corroborated by gene dosage measurements, were hypothetically due to the segregation of hemizygous alleles and minor genomic rearrangements occurring during the haploidization procedure. In conclusion, these plants that are valuable genetic and breeding materials contain completely homozygous and essentially intact genomes.


Assuntos
Citrus/genética , Genoma de Planta/genética , Alelos , Haploidia , Homozigoto
6.
FEMS Yeast Res ; 13(1): 97-106, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23106982

RESUMO

We have identified QDR2 in a screening for genes able to confer tolerance to sodium and/or lithium stress upon overexpression. Qdr2 is a multidrug transporter of the major facilitator superfamily, originally described for its ability to transport the antimalarial drug quinidine and the herbicide barban. To identify its physiological substrate, we have screened for phenotypes dependent on QDR2 and found that Qdr2 is able to transport monovalent and divalent cations with poor selectivity, as shown by growth tests and the determination of internal cation content. Moreover, strains overexpressing or lacking QDR2 also exhibit phenotypes when reactive oxygen species- producing agents, such as hydrogen peroxide or menadione were added to the growth medium. We have also found that the presence of copper and hydrogen peroxide repress the expression of QDR2. In addition, the copper uptake of a qdr2 mutant strain is similar to a wild type, but the extrusion is clearly impaired. Based on our results, we propose that free divalent copper is the main physiological substrate of Qdr2. As copper is a substrate for several redox reactions that occur within the cytoplasm, its function in copper homeostasis explains its role in the oxidative stress response.


Assuntos
Cobre/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Estresse Oxidativo/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Biológico , Cádmio/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Cobalto/metabolismo , Cobre/farmacologia , Deleção de Genes , Homeostase , Peróxido de Hidrogênio/farmacologia , Lítio/metabolismo , Lítio/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Oxirredução , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sódio/metabolismo , Sódio/farmacologia
7.
Nature ; 448(7152): 488-92, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17653190

RESUMO

Guanine-nucleotide exchange factors on ADP-ribosylation factor GTPases (ARF-GEFs) regulate vesicle formation in time and space by activating ARF substrates on distinct donor membranes. Mammalian GBF1 (ref. 2) and yeast Gea1/2 (ref. 3) ARF-GEFs act at Golgi membranes, regulating COPI-coated vesicle formation. In contrast, their Arabidopsis thaliana homologue GNOM (GN) is required for endosomal recycling, playing an important part in development. This difference indicates an evolutionary divergence of trafficking pathways between animals and plants, and raised the question of how endoplasmic reticulum-Golgi transport is regulated in plants. Here we demonstrate that the closest homologue of GNOM in Arabidopsis, GNOM-LIKE1 (GNL1; NM_123312; At5g39500), performs this ancestral function. GNL1 localizes to and acts primarily at Golgi stacks, regulating COPI-coated vesicle formation. Surprisingly, GNOM can functionally substitute for GNL1, but not vice versa. Our results suggest that large ARF-GEFs of the GBF1 class perform a conserved role in endoplasmic reticulum-Golgi trafficking and secretion, which is done by GNL1 and GNOM in Arabidopsis, whereas GNOM has evolved to perform an additional plant-specific function of recycling from endosomes to the plasma membrane. Duplication and diversification of ARF-GEFs in plants contrasts with the evolution of entirely new classes of ARF-GEFs for endosomal trafficking in animals, which illustrates the independent evolution of complex endosomal pathways in the two kingdoms.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Teste de Complementação Genética , Complexo de Golgi/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Modelos Biológicos , Mutação/genética , Fenótipo , Transporte Proteico/efeitos dos fármacos
8.
Plants (Basel) ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631107

RESUMO

The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness. Results revealed different gene expression patterns, with genes up- and down-regulated during fruit development progression. A principal component analysis was performed to correlate gene expression with agronomical traits. The decreasing expression of the ethylene biosynthetic genes DkACO1, DkACO2, and DkACS2, in concordance with other sensing (DkERS1) and transduction genes (DkERF18), provides a molecular mechanism for the previously described high production of ethylene in immature detached fruits. On the other side, DkERF8 and DkERF16 are postulated to induce fruit softening and skin colour change during natural persimmon fruit ripening via DkXTH9 and DkPSY activation, respectively. This study provides valuable information for a better understanding of the ethylene signalling pathway and its regulation during on-tree fruit ripening in persimmon.

9.
Plants (Basel) ; 12(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514216

RESUMO

Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory DORMANCY-ASSOCIATED MADS-BOX (DAM) factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance. This analysis provides a close view on gene-specific, single-bud variability throughout the developmental shift from dormant to dormancy-released stages, contributing to the characterization of putative co-expression modules and other regulatory aspects in this particular tissue.

10.
BMC Genomics ; 13: 601, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23134692

RESUMO

BACKGROUND: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo 'Piel de sapo' ('PS') and C. melo 'Pat 81', with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. RESULTS: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. 'PS' responded with a more rapid infection response than 'Pat 81' at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in 'PS' declined from 451 to 359, while the total number of differentially expressed transcripts in 'Pat 81' increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in 'Pat 81' compared to 'PS' suggested that JA response might be partially responsible for their observed differences in resistance. CONCLUSIONS: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation.


Assuntos
Citrullus/genética , Cucumis melo/genética , Micoses/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Sordariales , Citrullus/microbiologia , Cucumis melo/microbiologia , Perfilação da Expressão Gênica , Micoses/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Componente Principal
11.
New Phytol ; 193(1): 67-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21899556

RESUMO

• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS-box transcription factors encoded by DORMANCY ASSOCIATED MADS-box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy-related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4-DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Prunus/genética , Ácido Abscísico/farmacologia , Acetilação/efeitos dos fármacos , Imunoprecipitação da Cromatina , Ecótipo , Etiquetas de Sequências Expressas , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lisina/metabolismo , Metilação/efeitos dos fármacos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Prunus/efeitos dos fármacos , Prunus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
12.
Hortic Res ; 8(1): 261, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848702

RESUMO

DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.

13.
BMC Plant Biol ; 10: 276, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159189

RESUMO

BACKGROUND: External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Although numerous genes coding for enzymes involved in such biochemical pathways have been identified, the molecular control of this process has been scarcely studied. In this work we used the Citrus clementina mutants 39B3 and 39E7, showing delayed colour break, to isolate genes potentially related to the regulation of peel ripening and its physiological or biochemical effects. RESULTS: Pigment analyses revealed different profiles of carotenoid and chlorophyll modification in 39B3 and 39E7 mutants. Flavedo from 39B3 fruits showed an overall delay in carotenoid accumulation and chlorophyll degradation, while the flavedo of 39E7 was devoid of the apocarotenoid ß-citraurin among other carotenoid alterations. A Citrus microarray containing about 20,000 cDNA fragments was used to identify genes that were differentially expressed during colour change in the flavedo of 39B3 and 39E7 mutants respect to the parental variety. The results highlighted 73 and 90 genes that were respectively up- and down-regulated in both mutants. CcGCC1 gene, coding for a GCC type transcriptional factor, was found to be down-regulated. CcGCC1 expression was strongly induced at the onset of colour change in the flavedo of parental clementine fruit. Moreover, treatment of fruits with gibberellins, a retardant of external ripening, delayed both colour break and CcGCC1 overexpression. CONCLUSIONS: In this work, the citrus fruit ripening mutants 39B3 and 39E7 have been characterized at the phenotypic, biochemical and transcriptomic level. A defective synthesis of the apocarotenoid ß-citraurin has been proposed to cause the yellowish colour of fully ripe 39E7 flavedo. The analyses of the mutant transcriptomes revealed that colour change during peel ripening was strongly associated with a major mobilization of mineral elements and with other previously known metabolic and photosynthetic changes. The expression of CcGCC1 was associated with peel ripening since CcGCC1 down-regulation correlated with a delay in colour break induced by genetic, developmental and hormonal causes.


Assuntos
Citrus/genética , Perfilação da Expressão Gênica , Mutação , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Carotenoides/metabolismo , Clorofila/metabolismo , Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
14.
Tree Physiol ; 30(5): 655-66, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231169

RESUMO

To better understand the molecular and physiological mechanisms underlying maintenance and release of seasonal bud dormancy in perennial trees, we identified differentially expressed genes during dormancy progression in reproductive buds from peach (Prunus persica [L.] Batsch) by suppression subtractive hybridization (SSH) and microarray hybridization. Four SSH libraries were constructed, which were respectively enriched in cDNA highly expressed in dormant buds (named DR), in dormancy-released buds (RD) and in the cultivars with different chilling requirement, 'Zincal 5' (ZS) and 'Springlady' (SZ), sampled after dormancy release. About 2500 clones picked from the four libraries were loaded on a glass microarray. Hybridization of microarrays with the final products of SSH procedure was performed in order to validate the selected clones that were effectively enriched in their respective sample. Nearly 400 positive clones were sequenced, which corresponded to 101 different unigenes with diverse functional annotation. We obtained DAM4, 5 and 6 genes coding for MADS-box transcription factors previously related to growth cessation and terminal bud formation in the evergrowing mutant of peach. Several other cDNAs are similar to dormancy factors described in other species, and others have been related to bud dormancy for the first time in this study. Quantitative reverse transcription polymerase chain reaction analysis confirmed differential expression of cDNAs coding for a Zn-finger transcription factor, a GRAS-like regulator, a DNA-binding protein and proteins similar to forisome subunits involved in the reversible occlusion of sieve elements in Fabaceae, among others.


Assuntos
Hibridização Genética , Prunus/genética , Prunus/fisiologia , Estações do Ano
15.
Front Plant Sci ; 11: 1288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973847

RESUMO

Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.

16.
Sci Rep ; 10(1): 3543, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103143

RESUMO

MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such as trichome formation in many plant species. DkMYB2 and DkMYB4 (MYB-type), DkMYC1 (bHLH-type) and DkWDR1 (WD40-type) factors have been proposed by different authors to take part of persimmon MBW complexes for proanthocyanidin accumulation in immature fruit, leading to its characteristic astringent flavour with important agronomical and ecological effects. We have confirmed the nuclear localization of these proteins and their mutual physical interaction by bimolecular fluorescence complementation analysis. In addition, transient expression of DkMYB2, DkMYB4 and DkMYC1 cooperatively increase the expression of a persimmon anthocyanidin reductase gene (ANR), involved in the biosynthesis of cis-flavan-3-ols, the structural units of proanthocyanidin compounds. Collectively, these data support the presence of MBW complexes in persimmon fruit and suggest their coordinated participation in ANR regulation for proanthocyanidin production.


Assuntos
Diospyros/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/metabolismo , NADH NADPH Oxirredutases/genética , Proantocianidinas/biossíntese , Regulação Enzimológica da Expressão Gênica , Fenótipo , Transporte Proteico
17.
Front Plant Sci ; 10: 412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024588

RESUMO

In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in Arabidopsis. Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy. To date, only a few chromatin modification genes, as candidate regulators of these developmental stages, have been functionally characterized in trees. In this work, we summarize the major findings of the chromatin-remodeling role during growth-dormancy cycles and we explore the transcriptional profiling of vegetative apical bud and stem tissues during dormancy. Finally, we discuss genetic strategies designed to improve the growth and quality of forest trees.

18.
BMC Genomics ; 9: 381, 2008 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-18691431

RESUMO

BACKGROUND: Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. RESULTS: Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. CONCLUSION: In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement.


Assuntos
Citrus/genética , Genoma de Planta , Populus/genética , Deleção de Sequência , Alelos , Arabidopsis/genética , Clorofila/metabolismo , Clorofila A , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Citrus/metabolismo , Citrus/efeitos da radiação , Nêutrons Rápidos , Dosagem de Genes , Genoma de Planta/efeitos da radiação , Genômica , Família Multigênica , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Vitis/genética
19.
Front Plant Sci ; 9: 1368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271422

RESUMO

During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA