Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(60): 16052-16065, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30141226

RESUMO

This work is focused on the identification and investigation of the catalytically relevant key iron species in a photocatalytic proton reduction system described by Beller and co-workers. The system is driven by visible light and consists of the low-cost [Fe3 (CO)12 ] as catalyst precursor, electron-poor phosphines P(R)3 as co-catalysts, and a standard iridium-based photosensitizer dissolved in a mixture of THF, water, and the sacrificial reagent triethylamine. The catalytic reaction system was investigated by operando continuous-flow FTIR spectroscopy coupled with H2 gas volumetry, as well as by X-ray absorption spectroscopy, NMR spectroscopy, DFT calculations, and cyclic voltammetry. Several iron carbonyl species were identified, all of which emerge throughout the catalytic process. Depending on the applied P(R)3 , the iron carbonyl species were finally converted into [Fe2 (CO)6 (µ-CO){µ-P(R)2 }]- . This involves a P-C cleavage reaction. The requirements of P(R)3 and the necessary reaction conditions are specified. [Fe2 (CO)6 (µ-CO){µ-P(R)2 }]- represents a self-assembling, sulfur-free [FeFe]-hydrogenase active-site mimic and shows good catalytic activity if the substituent R is electron poor. Deactivation mechanisms have also been investigated, for example, the decomposition of the photosensitizer or processes observed in the case of excessive amounts of P(R)3 . [Fe2 (CO)6 (µ-CO){µ-P(R)2 }]- has potential for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA