Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 23(50): 12125-12130, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370505

RESUMO

Developing high-performance non-precious metal catalysts (NPMCs) for the oxygen-reduction reaction (ORR) is of critical importance for sustainable energy conversion. We report a novel NPMC consisting of iron carbide (Fe3 C) nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes (b-NCNTs), synthesized by a new metal-organic framework (MOF)-templated assembly approach. The electrocatalyst exhibits excellent ORR activity in 0.1 m KOH (0.89 V at -1 mA cm-2 ) and in 0.5 m H2 SO4 (0.73 V at -1 mA cm-2 ) with a hydrogen peroxide yield of below 1 % in both electrolytes. Due to encapsulation of the Fe3 C nanoparticles inside porous b-NCNTs, the reported NPMC retains its high ORR activity after around 70 hours in both alkaline and acidic media.

2.
Chemistry ; 23(15): 3583-3594, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-27922204

RESUMO

The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.

3.
Chemistry ; 22(10): 3304-3311, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26821605

RESUMO

Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.

4.
Angew Chem Int Ed Engl ; 55(3): 1178-82, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26639893

RESUMO

Superhydrophobic/superoleophilic composites HFGO@ZIF-8 have been prepared from highly fluorinated graphene oxide (HFGO) and the nanocrystalline zeolite imidazole framework ZIF-8. The structure-directing and coordination-modulating properties of HFGO allow for the selective nucleation of ZIF-8 nanoparticles at the graphene surface oxygen functionalities. This results in localized nucleation and size-controlled ZIF-8 nanocrystals intercalated in between HFGO layers. The composite microstructure features fluoride groups bonded at the graphene. Self-assembly of a unique micro-mesoporous architecture is achieved, where the micropores originate from ZIF-8 nanocrystals, while the functionalized mesopores arise from randomly organized HFGO layers separated by ZIF-8 nanopillars. The hybrid material displays an exceptional high water contact angle of 162° and low oil contact angle of 0° and thus reveals very high sorption selectivity, fast kinetics, and good absorbencies for nonpolar/polar organic solvents and oils from water. Accordingly, Sponge@HFGO@ZIF-8 composites are successfully utilized for oil-water separation.

5.
Angew Chem Int Ed Engl ; 55(12): 4087-91, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26913583

RESUMO

Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal-air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core-shell Co@Co3O4 nanoparticles embedded in CNT-grafted N-doped carbon-polyhedra obtained by the pyrolysis of cobalt metal-organic framework (ZIF-67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2 , and RuO2 and thus ranking them among one of the best non-precious-metal electrocatalysts for reversible oxygen electrodes.

6.
Chem Sci ; 7(10): 6413-6421, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451097

RESUMO

The analogy between ZnR fragments and the hydrogen radical represents a fruitful concept in organometallic synthesis. The organozinc(ii) and -zinc(i) sources ZnMe2 (Me = methyl) and [Zn2Cp*2] (Cp* = pentamethylcyclopentadienyl) provide one-electron fragments ·ZnR (R = Me, Cp*), which can be trapped by transition metal complexes [L a M], yielding [L b (ZnR) n ]. The addition of the dizinc compound [Zn2Cp*2] to coordinatively unsaturated [L a M] by the homolytic cleavage of the Zn-Zn bond can be compared to the classic oxidative addition reaction of H2, forming dihydride complexes [L a M(H)2]. It has also been widely shown that dihydrogen coordinates under preservation of the H-H bond in the case of certain electronic properties of the transition metal fragment. The σ-aromatic triangular clusters [Zn3Cp*3]+ and [Zn2CuCp*3] may be regarded as the first indication of this so far unknown, side-on coordination mode of [Zn2Cp*2]. With this background in mind the question arises if a series of complexes featuring the Zn2M structural motif can be prepared exhibiting a (more or less) intact Zn-Zn interaction, i.e. di-zinc complexes which are analogous to non-classical dihydrogen complexes of the Kubas type. In order to probe this idea, a series of interrelated organozinc nickel and palladium complexes and clusters were synthesized and characterized as model compounds: [Ni(ZnCp*)(ZnMe)(PMe3)3] (1), [Ni(ZnCp*)2(ZnMe)2(PMe3)2] (2), [{Ni(CN t Bu)2(µ2-ZnCp*)(µ2-ZnMe)}2] (3), [Pd(ZnCp*)4(CN t Bu)2] (4) and [Pd3Zn6(PCy3)2(Cp*)4] (5). The dependence of Zn···Zn interactions as a function of the ligand environments and the metal centers was studied. Experimental X-ray crystallographic structural data and DFT calculations support the analogy between dihydrogen and dizinc transition metal complexes.

7.
Chem Commun (Camb) ; 50(87): 13258-60, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25231542

RESUMO

Solvent mixture controlled rapid room temperature syntheses for facile access to uniform zeolitic-imidazolate framework nanocrystals (ZIF-7, ZIF-65-Zn and ZIF-71) are reported. ZIF thin film devices for sensing volatile organic chemicals were fabricated by dip-coating nano-ZIF (80-130 nm) suspensions.

8.
Chem Commun (Camb) ; 50(72): 10382-5, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25026193

RESUMO

Four organic amine-based solvents were discovered which enable direct exfoliation of graphite to produce high-quality and oxygen-free graphene nanosheets. These solvents outperform previously used solvents and additives such as N-methyl-pyrrolidone and surfactants in terms of their dispersing capacity. The resulting dispersions allow the facile fabrication of zeolitic imidazolate framework (ZIF)-graphene nanocomposites with remarkable CO2 storage capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA