Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7865, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398725

RESUMO

Extrapolation of cell culture-based test results to in vivo effects is limited, as cell cultures fail to emulate organ complexity and multi-tissue crosstalk. Biology-inspired microphysiological systems provide preclinical insights into absorption, distribution, metabolism, excretion, and toxicity of substances in vitro by using human three-dimensional organotypic cultures. We co-cultured a human lung equivalent from the commercially available bronchial MucilAir culture and human liver spheroids from HepaRG cells to assess the potential toxicity of inhaled substances under conditions that permit organ crosstalk. We designed a new HUMIMIC Chip with optimized medium supply and oxygenation of the organ cultures and cultivated them on-chip for 14 days in separate culture compartments of a closed circulatory perfusion system, demonstrating the viability and homeostasis of the tissue cultures. A single-dose treatment of the hepatotoxic and carcinogenic aflatoxin B1 impaired functionality in bronchial MucilAir tissues in monoculture but showed a protective effect when the tissues were co-cultured with liver spheroids, indicating that crosstalk can be achieved in this new human lung-liver co-culture. The setup described here may be used to determine the effects of exposure to inhaled substances on a systemic level.


Assuntos
Aflatoxina B1/farmacologia , Técnicas de Cocultura/métodos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Esferoides Celulares/efeitos dos fármacos , Administração por Inalação , Apoptose/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Venenos/farmacologia , Substâncias Protetoras/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
2.
In Vitro Cell Dev Biol Anim ; 56(10): 847-858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170472

RESUMO

Access to complex in vitro models that recapitulate the unique markers and cell-cell interactions of the hair follicle is rather limited. Creation of scalable, affordable, and relevant in vitro systems which can provide predictive screens of cosmetic ingredients and therapeutic actives for hair health would be highly valued. In this study, we explore the features of the microfollicle, a human hair follicle organoid model based on the spatio-temporally defined co-culture of primary cells. The microfollicle provides a 3D differentiation platform for outer root sheath keratinocytes, dermal papilla fibroblasts, and melanocytes, via epidermal-mesenchymal-neuroectodermal cross-talk. For assay applications, microfollicle cultures were adapted to 96-well plates suitable for medium-throughput testing up to 21 days, and characterized for their spatial and lineage markers. The microfollicles showed hair-specific keratin expression in both early and late stages of cultivation. The gene expression profile of microfollicles was also compared with human clinical biopsy samples in response to the benchmark hair-growth compound, minoxidil. The gene expression changes in microfollicles showed up to 75% overlap with the corresponding gene expression signature observed in the clinical study. Based on our results, the cultivation of the microfollicle appears to be a practical tool for generating testable insights for hair follicle development and offers a complex model for pre-clinical substance testing.


Assuntos
Folículo Piloso/citologia , Modelos Biológicos , Biomarcadores/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/ultraestrutura , Humanos , Recém-Nascido , Queratinas/metabolismo , Masculino , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Minoxidil/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 8(1): 15010, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301942

RESUMO

Antibody therapies targeting the epithelial growth factor receptor (EGFR) are being increasingly applied in cancer therapy. However, increased tumour containment correlates proportionally with the severity of well-known adverse events in skin. The prediction of the latter is not currently possible in conventional in vitro systems and limited in existing laboratory animal models. Here we established a repeated dose "safficacy" test assay for the simultaneous generation of safety and efficacy data. Therefore, a commercially available multi-organ chip platform connecting two organ culture compartments was adapted for the microfluidic co-culture of human H292 lung cancer microtissues and human full-thickness skin equivalents. Repeated dose treatment of the anti-EGFR-antibody cetuximab showed an increased pro-apoptotic related gene expression in the tumour microtissues. Simultaneously, proliferative keratinocytes in the basal layer of the skin microtissues were eliminated, demonstrating crucial inhibitory effects on the physiological skin cell turnover. Furthermore, antibody exposure modulated the release of CXCL8 and CXCL10, reflecting the pattern changes seen in antibody-treated patients. The combination of a metastatic tumour environment with a miniaturized healthy organotypic human skin equivalent make this "safficacy" assay an ideal tool for evaluation of the therapeutic index of EGFR inhibitors and other promising oncology candidates.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Receptores ErbB/antagonistas & inibidores , Microfluídica , Neoplasias/etiologia , Pele/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cetuximab/efeitos adversos , Cetuximab/farmacologia , Técnicas de Cocultura , Desenho de Equipamento , Humanos , Microfluídica/instrumentação , Microfluídica/métodos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA