RESUMO
BACKGROUND: Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. RESULTS: We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development. CONCLUSIONS: Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.
Assuntos
Afídeos/embriologia , Afídeos/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Pisum sativum , Simbiose , Tirosina/metabolismo , Animais , Afídeos/metabolismo , Afídeos/fisiologia , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Transporte Biológico , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Of the 617 genes from Buchnera aphidicola, the obligate bacterial symbiont of the pea aphid, 23% were differentially expressed in embryos compared to adults. Genes involved in flagellar apparatus and riboflavin synthesis exhibited particularly robust upregulation in embryos, suggesting functional differences between the symbiosis in the adult and embryo insect.
Assuntos
Afídeos/microbiologia , Buchnera/genética , Buchnera/metabolismo , Perfilação da Expressão Gênica , Simbiose/fisiologia , Envelhecimento , Animais , Embrião não Mamífero/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Regulação para CimaRESUMO
Buchnera aphidicola is the primary obligate intracellular symbiont of most aphid species. B. aphidicola and aphids have been evolving in parallel since their association started, about 150 Myr ago. Both partners have lost their autonomy, and aphid diversification has been confined to smaller ecological niches by this co-evolution. B. aphidicola has undergone major genomic and biochemical changes as a result of adapting to intracellular life. Several genomes of B. aphidicola from different aphid species have been sequenced in the last decade, making it possible to carry out analyses and comparative studies using system-level in silico methods. This review attempts to provide a systemic description of the symbiotic function of aphid endosymbionts, particularly of B. aphidicola from the pea aphid Acyrthosiphon pisum, by analyzing their structural genomic properties, as well as their genetic and metabolic networks.