Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2312571121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266049

RESUMO

We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO[Formula: see text]:7%Y from the mixed monoclinic ([Formula: see text]) [Formula: see text] antipolar orthorhombic ([Formula: see text]) phase to pure antipolar orthorhombic ([Formula: see text]) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the [Formula: see text] metastable state at 300 K. Compression also drives polar orthorhombic ([Formula: see text]) hafnia into the tetragonal ([Formula: see text]) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO[Formula: see text].

2.
Nature ; 553(7686): 68-72, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29258293

RESUMO

Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.


Assuntos
Compostos de Cálcio/química , Eletricidade , Níquel/química , Compostos Organometálicos/química , Óxidos/química , Cloreto de Sódio/química , Titânio/química , Água/química , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Transição de Fase , Prótons , Navios , Síncrotrons , Temperatura
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34531299

RESUMO

Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia, habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability-plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence.


Assuntos
Algoritmos , Aplysia/fisiologia , Inteligência Artificial , Elementos Isolantes , Redes Neurais de Computação , Níquel/química , Sinapses/fisiologia , Animais , Elétrons , Modelos Neurológicos , Plasticidade Neuronal
4.
Nat Mater ; 20(6): 826-832, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495629

RESUMO

HfO2, a simple binary oxide, exhibits ultra-scalable ferroelectricity integrable into silicon technology. This material has a polymorphic nature, with the polar orthorhombic (Pbc21) form in ultrathin films regarded as the plausible cause of ferroelectricity but thought not to be attainable in bulk crystals. Here, using a state-of-the-art laser-diode-heated floating zone technique, we report the Pbc21 phase and ferroelectricity in bulk single-crystalline HfO2:Y as well as the presence of the antipolar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti)polar crystallographic signatures and abundant 90°/180° ferroelectric domains in addition to switchable polarization with negligible wake-up effects. Density-functional-theory calculations indicate that the yttrium doping and rapid cooling are the key factors for stabilization of the desired phase in bulk. Our observations provide insights into the polymorphic nature and phase control of HfO2, remove the upper size limit for ferroelectricity and suggest directions towards next-generation ferroelectric devices.

5.
Proc Natl Acad Sci U S A ; 116(48): 23972-23976, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712434

RESUMO

Charge-order-driven ferroelectrics are an emerging class of functional materials, distinct from conventional ferroelectrics, where electron-dominated switching can occur at high frequency. Despite their promise, only a few systems exhibiting this behavior have been experimentally realized thus far, motivating the need for new materials. Here, we use density-functional theory to study the effect of artificial structuring on mixed-valence solid-solution La1/3Sr2/3FeO3 (LSFO), a system well studied experimentally. Our calculations show that A-site cation (111)-layered LSFO exhibits a ferroelectric charge-ordered phase in which inversion symmetry is broken by changing the registry of the charge order with respect to the superlattice layering. The phase is energetically degenerate with a ground-state centrosymmetric phase, and the computed switching polarization is 39 µC/[Formula: see text], a significant value arising from electron transfer between [Formula: see text] octahedra. Our calculations reveal that artificial structuring of LSFO and other mixed valence oxides with robust charge ordering in the solid solution phase can lead to charge-order-induced ferroelectricity.

6.
Proc Natl Acad Sci U S A ; 116(40): 19863-19868, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527227

RESUMO

We investigate [Formula: see text]/[Formula: see text] superlattices in which we observe a full electron transfer at the interface from Ir to Ni, triggering a massive structural and electronic reconstruction. Through experimental characterization and first-principles calculations, we determine that a large crystal field splitting from the distorted interfacial [Formula: see text] octahedra surprisingly dominates over the spin-orbit coupling and together with the Hund's coupling results in the high-spin (S = 1) configurations on both the Ir and Ni sites. This demonstrates the power of interfacial charge transfer in coupling lattice, charge, orbital, and spin degrees of freedom, opening fresh avenues of investigation of quantum states in oxide superlattices.

7.
Proc Natl Acad Sci U S A ; 116(44): 21992-21997, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611403

RESUMO

Point defects, such as oxygen vacancies, control the physical properties of complex oxides, relevant in active areas of research from superconductivity to resistive memory to catalysis. In most oxide semiconductors, electrons that are associated with oxygen vacancies occupy the conduction band, leading to an increase in the electrical conductivity. Here we demonstrate, in contrast, that in the correlated-electron perovskite rare-earth nickelates, RNiO3 (R is a rare-earth element such as Sm or Nd), electrons associated with oxygen vacancies strongly localize, leading to a dramatic decrease in the electrical conductivity by several orders of magnitude. This unusual behavior is found to stem from the combination of crystal field splitting and filling-controlled Mott-Hubbard electron-electron correlations in the Ni 3d orbitals. Furthermore, we show the distribution of oxygen vacancies in NdNiO3 can be controlled via an electric field, leading to analog resistance switching behavior. This study demonstrates the potential of nickelates as testbeds to better understand emergent physics in oxide heterostructures as well as candidate systems in the emerging fields of artificial intelligence.

8.
Proc Natl Acad Sci U S A ; 115(39): 9672-9677, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30104357

RESUMO

Solid-state ion shuttles are of broad interest in electrochemical devices, nonvolatile memory, neuromorphic computing, and biomimicry utilizing synthetic membranes. Traditional design approaches are primarily based on substitutional doping of dissimilar valent cations in a solid lattice, which has inherent limits on dopant concentration and thereby ionic conductivity. Here, we demonstrate perovskite nickelates as Li-ion shuttles with simultaneous suppression of electronic transport via Mott transition. Electrochemically lithiated SmNiO3 (Li-SNO) contains a large amount of mobile Li+ located in interstitial sites of the perovskite approaching one dopant ion per unit cell. A significant lattice expansion associated with interstitial doping allows for fast Li+ conduction with reduced activation energy. We further present a generalization of this approach with results on other rare-earth perovskite nickelates as well as dopants such as Na+ The results highlight the potential of quantum materials and emergent physics in design of ion conductors.

9.
Phys Rev Lett ; 125(4): 046402, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794815

RESUMO

MoTe_{2} has recently attracted much attention due to the observation of pressure-induced superconductivity, exotic topological phase transitions, and nonlinear quantum effects. However, there has been debate on the intriguing structural phase transitions among various observed phases of MoTe_{2} and their connection to the underlying topological electronic properties. In this work, by means of density-functional theory calculations, we investigate the structural phase transition between the polar T_{d} and nonpolar 1T^{'} phases of MoTe_{2} in reference to a hypothetical high-symmetry T_{0} phase that exhibits higher-order topological features. In the T_{d} phase we obtain a total of 12 Weyl points, which can be created/annihilated, dynamically manipulated, and switched by tuning a polar phonon mode. We also report the existence of a tunable nonlinear Hall effect in T_{d}-MoTe_{2} and propose the use of this effect as a probe for the detection of polarity orientation in polar (semi)metals. By studying the role of dimensionality, we identify a configuration in which a nonlinear surface response current emerges. The potential technological applications of the tunable Weyl phase and the nonlinear Hall effect are discussed.

10.
Phys Rev Lett ; 125(25): 257603, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416369

RESUMO

Hafnia (HfO_{2})-based thin films have promising applications in nanoscale electronic devices due to their robust ferroelectricity and integration with silicon. Identifying and stabilizing the ferroelectric phases of HfO_{2} have attracted intensive research interest in recent years. In this work, first-principles calculations on (111)-oriented HfO_{2} are used to discover that imposing an in-plane shear strain on the metastable tetragonal phase drives it to a polar phase. This in-plane-shear-induced polar phase is shown to be an epitaxial-strain-induced distortion of a previously proposed metastable ferroelectric Pnm2_{1} phase of HfO_{2}. This ferroelectric Pnm2_{1} phase can account for the recently observed ferroelectricity in (111)-oriented HfO_{2}-based thin films on a SrTiO_{3} (STO) (001) substrate [Nat. Mater. 17, 1095 (2018)NMAACR1476-112210.1038/s41563-018-0196-0]. Further investigation of this alternative ferroelectric phase of HfO_{2} could potentially improve the performances of HfO_{2}-based films in logic and memory devices.

11.
Nat Mater ; 15(2): 204-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657329

RESUMO

The fundamental challenge for designing transparent conductors used in photovoltaics, displays and solid-state lighting is the ideal combination of high optical transparency and high electrical conductivity. Satisfying these competing demands is commonly achieved by increasing carrier concentration in a wide-bandgap semiconductor with low effective carrier mass through heavy doping, as in the case of tin-doped indium oxide (ITO). Here, an alternative design strategy for identifying high-conductivity, high-transparency metals is proposed, which relies on strong electron-electron interactions resulting in an enhancement in the carrier effective mass. This approach is experimentally verified using the correlated metals SrVO3 and CaVO3, which, despite their high carrier concentration (>2.2 × 10(22) cm(-3)), have low screened plasma energies (<1.33 eV), and demonstrate excellent performance when benchmarked against ITO. A method is outlined to rapidly identify other candidates among correlated metals, and strategies are proposed to further enhance their performance, thereby opening up new avenues to develop transparent conductors.

12.
Phys Rev Lett ; 119(3): 036802, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777633

RESUMO

We introduce antiferroelectric topological insulators as a new class of functional materials in which an electric field can be used to control topological order and induce topological phase transitions. Using first principles methods, we predict that several alkali-MgBi orthorhombic members of an ABC family of compounds are antiferroelectric topological insulators. We also show that epitaxial strain and hydrostatic pressure can be used to tune the topological order and the band gap of these ABC compounds. Antiferroelectric topological insulators could enable precise control of topology using electric fields, enhancing the applicability of topological materials in electronics and spintronics.

13.
Phys Rev Lett ; 118(8): 087602, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282196

RESUMO

The structure and properties of the 1∶1 superlattice of LaVO_{3} and SrVO_{3} are investigated with a first-principles density-functional-theory-plus-U (DFT+U) method. The lowest energy states are antiferromagnetic charge-ordered Mott-insulating phases. In one of these insulating phases, layered charge ordering combines with the layered La/Sr cation ordering to produce a polar structure with a large nonzero spontaneous polarization normal to the interfaces. This polarization, comparable to that of conventional ferroelectrics, is produced by electron transfer between the V^{3+} and V^{4+} layers. The energy of this normal-polarization state relative to the ground state is only 3 meV per vanadium. Under tensile strain, this energy difference can be further reduced, suggesting that the normal-polarization state can be induced by an electric field applied normal to the superlattice layers, yielding an antiferroelectric double-hysteresis loop. If the system does not switch back to the ground state on removal of the field, a ferroelectric-type hysteresis loop could be observed.

14.
Inorg Chem ; 55(9): 4320-9, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27058393

RESUMO

Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to ∼120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s(2) lone-pair electrons, together with a surprising off-centering of Mn(2+) (d(5)) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN ≈ 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near ∼150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.

15.
Nature ; 466(7309): 954-8, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20725036

RESUMO

Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism. Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic- or electric-field-induced multiferroics. Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today. Recently, however, a new route to ferroelectric ferromagnets was proposed by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO(3), was predicted to exhibit strong ferromagnetism (spontaneous magnetization, approximately 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, approximately 10 microC cm(-2)) simultaneously under large biaxial compressive strain. These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.


Assuntos
Eletricidade , Európio/química , Magnetismo , Óxidos/química , Titânio/química , Capacitância Elétrica , Microscopia Eletrônica de Transmissão e Varredura , Temperatura , Difração de Raios X
16.
Phys Rev Lett ; 115(10): 106401, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382686

RESUMO

Using first-principles calculations, we determined the epitaxial-strain dependence of the ground state of the 1∶1 SrCrO(3)/SrTiO(3) superlattice. The superlattice layering leads to significant changes in the electronic states near the Fermi level, derived from Cr t(2g) orbitals. An insulating phase is found when the tensile strain is greater than 2.2% relative to unstrained cubic SrTiO(3). The insulating character is shown to arise from Cr t(2g) orbital ordering, which is produced by an in-plane polar distortion that couples to the superlattice d bands and is stabilized by epitaxial strain. This effect can be used to engineer the band structure near the Fermi level in transition metal oxide superlattices.

17.
Phys Rev Lett ; 112(12): 127601, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724680

RESUMO

All known proper ferroelectrics are unable to polarize normal to a surface or interface if the resulting depolarization field is unscreened, but there is no fundamental principle that enforces this behavior. In this work, we introduce hyperferroelectrics, a new class of proper ferroelectrics which polarize even when the depolarization field is unscreened, this condition being equivalent to instability of a longitudinal optic mode in addition to the transverse-optic-mode instability characteristic of proper ferroelectrics. We use first-principles calculations to show that several recently discovered hexagonal ferroelectric semiconductors have this property, and we examine its consequences both in the bulk and in a superlattice geometry.

18.
J Phys Condens Matter ; 36(35)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38788732

RESUMO

In ferroelectric switching, an applied electric field switches the system between two polar symmetry-equivalent states. In this work, we use first-principles calculations to explore the polar states of hydrogen-doped samarium nickelate (SNO) at a concentration of 1/4 hydrogen per Ni. The inherent tilt pattern of SNO and the presence of the interstitial hydrogen present an insurmountable energy barrier to switch these polar states to their symmetry-equivalent states under inversion. We find a sufficiently low barrier to move the localized electron to a neighboring NiO6octahedron, a state unrelated by symmetry but equal in energy under a square epitaxial strain (a = b), resulting in a large change in polarization. We term this unconventional ferroelectric a 'fraternal-twin' ferroelectric.

19.
Nat Commun ; 15(1): 4717, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830914

RESUMO

Materials with field-tunable polarization are of broad interest to condensed matter sciences and solid-state device technologies. Here, using hydrogen (H) donor doping, we modify the room temperature metallic phase of a perovskite nickelate NdNiO3 into an insulating phase with both metastable dipolar polarization and space-charge polarization. We then demonstrate transient negative differential capacitance in thin film capacitors. The space-charge polarization caused by long-range movement and trapping of protons dominates when the electric field exceeds the threshold value. First-principles calculations suggest the polarization originates from the polar structure created by H doping. We find that polarization decays within ~1 second which is an interesting temporal regime for neuromorphic computing hardware design, and we implement the transient characteristics in a neural network to demonstrate unsupervised learning. These discoveries open new avenues for designing ferroelectric materials and electrets using light-ion doping.

20.
Phys Rev Lett ; 110(1): 017603, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383838

RESUMO

We use a first-principles rational-design approach to identify a previously unrecognized class of antiferroelectric materials in the Pnma MgSrSi structure type. The MgSrSi structure type can be described in terms of antipolar distortions of the nonpolar P6(3)/mmc ZrBeSi structure type, and we find many members of this structure type are close in energy to the related polar P6(3)mc LiGaGe structure type, which includes many members we predict to be ferroelectric. We highlight known ABC combinations in which this energy difference is comparable to the antiferroelectric-ferroelectric switching barrier of PbZrO(3). We calculate structural parameters and relative energies for all three structure types, both for reported and as-yet hypothetical representatives of this class. Our results provide guidance for the experimental realization and further investigation of high-performance materials suitable for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA