Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 45(2): 743-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065423

RESUMO

Aerial extent of wetland ecosystems has decreased dramatically since precolonial times due to the conversion of these areas for human use. Wetlands provide various ecosystem services, and conservation efforts are being made to restore wetlands and their functions, including soil carbon storage. This Mid-Atlantic Regional USDA Wetland Conservation Effects Assessment Project study was conducted to evaluate the effects and effectiveness of wetland conservation practices along the Mid-Atlantic Coastal Plain. This study examined 48 wetland sites in Delaware, Maryland, Virginia, and North Carolina under natural, prior converted cropland, and 5- to 10-yr post wetland restoration states. The North Carolina sites mainly contained soils dominated by organic soil materials and therefore were analyzed separately from the rest of the sites, which primarily contained mineral soils. Soil samples were collected using the bulk density core method by horizon to a depth of 1 m and were analyzed for percent carbon. The natural wetlands were found to have significantly greater carbon stocks (21.5 ± 5.2 kg C m) than prior converted croplands (7.95 ± 1.93 kg C m; < 0.01) and restored wetlands (4.82 ± 1.13 kg C m; < 0.001). The restored and prior converted sites did not differ significantly, possibly the result of the methods used to restore the wetlands, and the relatively young age of the restored sites. Wetlands were either restored by plugging drainage structures, with minimal surface disturbance, or by scraping the surface (i.e., excavation) to increase hydroperiod. Sites restored with the scraping technique had significantly lower carbon stocks (2.70 ± 0.38 kg C m) than those restored by passive techniques (6.06 ± 1.50 kg C m; = 0.09). Therefore, techniques that involve excavation and scraping to restore hydrology appear to negatively affect C storage.


Assuntos
Carbono/análise , Áreas Alagadas , Delaware , North Carolina , Solo
2.
J Environ Qual ; 44(3): 1011-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024281

RESUMO

Over the last century, North Carolina has seen a severe reduction in the percentage of wetlands and a rise in negative environmental impacts related to this loss. To counter these effects, efforts have been enacted to mitigate wetland loss and create new wetland areas. The objective of this study was to assess the impact of hydrological restoration at several sites in the North Carolina coastal plain. Nine sites were selected for study. Hydrologically restored wetlands were compared with natural wetlands and prior converted (PC) croplands (i.e., historic wetlands under agricultural production). Each site was analyzed along a relative wetness gradient, and physicochemical properties, denitrification enzyme activity, and NO reductase gene () abundances using real-time PCR were measured. Physicochemically, restoration resulted in significantly increased levels of total C as compared with PC cropland sites. Restored wetland sites also saw pH, soil moisture, P, and NO+NO approximate levels similar to those of natural wetlands. Denitrification enzyme activity rates varied based on relative wetness within individual sites, generally increasing with increasing soil moisture. However, denitrification tended to be lower in restored wetland sites relative to natural wetlands. Gene abundances of saw statistically significant decreases in restored wetland soils. In conclusion, although analysis of restored wetlands reveals clear changes in several physicochemical characteristics and significant decreases in gene abundances, restoration efforts appear to have not significantly affected the denitrification component of the N cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA