RESUMO
The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Loci Gênicos , Imunidade Inata/genética , Proteínas Serina-Treonina Quinases/genética , Processos de Determinação Sexual/genética , Alelos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/ultraestrutura , Epistasia Genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Heterozigoto , Masculino , Mutação/genética , NF-kappa B/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Transcrição GênicaRESUMO
Regulation of organelle transport along microtubules is important for proper distribution of membrane organelles and protein complexes in the cytoplasm. RNAi-mediated knockdown in cultured Drosophila S2 cells demonstrates that two microtubule-binding proteins, a unique isoform of Darkener of apricot (DOA) protein kinase, and its substrate, translational elongation factor EF1γ, negatively regulate transport of several classes of membrane organelles along microtubules. Inhibition of transport by EF1γ requires its phosphorylation by DOA on serine 294. Together, our results indicate a new role for two proteins that have not previously been implicated in regulation of the cytoskeleton. These results further suggest that the biological role of some of the proteins binding to the microtubule track is to regulate cargo transport along these tracks.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Macrófagos/metabolismo , Microtúbulos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Peroxissomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Transporte Biológico , Linhagem Celular , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Macrófagos/ultraestrutura , Microtúbulos/ultraestrutura , Fator 1 de Elongação de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Animais , Olho Composto de Artrópodes/enzimologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Epistasia Genética , Receptores ErbB/metabolismo , Feminino , Estudos de Associação Genética , Masculino , Dados de Sequência Molecular , Asas de Animais/enzimologia , Asas de Animais/crescimento & desenvolvimentoRESUMO
BACKGROUND: The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. RESULTS: We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. CONCLUSIONS: Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools.
Assuntos
Processamento Alternativo/genética , Drosophila/genética , Modelos Genéticos , Análise de Sequência de RNA/métodos , Software , Animais , Sequência de Bases , Biologia Computacional , Simulação por Computador , Feminino , Perfilação da Expressão Gênica/métodos , Masculino , Dados de Sequência Molecular , Isoformas de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/genéticaRESUMO
The Darkener of apricot (Doa) locus of Drosophila encodes a LAMMER protein kinase affecting alterative splicing, and hence sex determination, via the phosphorylation of SR and SR-like proteins. Doa encodes 6 different kinases via alternative promoter usage. To provide further insight into the roles of the multiple isoforms, we mapped polymorphisms, deletions, and P-element insertions in the locus, identifying several that are largely, if not completely, isoform specific in their effects. These tests, along with the use of lines permitting overexpression and interfering RNA expression, demonstrate that the major isoforms of 55 and 105 kDa perform separate functions. The 105-kDa and a minor 138-kDa isoform are both vital but do not apparently perform functions essential for sex determination. Curiously, male-specific lethality induced by overexpression of the 55-kDa kinase in the larval fat body is rescued by coexpression of TRA, suggesting a sex-specific physiological role for this isoform. Maternal effects in which the survival of heteroallelic adults depends upon the direction of the cross are consistent with a role for a 105-kDa cytoplasmic kinase in oogenesis or early larval development.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Alelos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Oogênese , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Post-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing their stability, interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, most commonly serine, threonine and tyrosine in metazoans. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that any given phosphorylation site might be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from Drosophila embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for Drosophila At iProteinDB, scientists can view the PTM landscape for any Drosophila protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related Drosophila species. Further, iProteinDB enables comparison of PTM data from Drosophila to that of orthologous proteins from other model organisms, including human, mouse, rat, Xenopus tropicalis, Danio rerio, and Caenorhabditis elegans.
Assuntos
Bases de Dados de Proteínas , Proteínas de Drosophila/genética , Drosophila/genética , Processamento de Proteína Pós-Traducional/genética , Animais , Humanos , Fosforilação , Proteômica , Transdução de SinaisRESUMO
The unique LAMMER (or Clk) protein kinase of Drosophila is encoded at the Doa locus. To better understand the pleiotropic effects of Doa mutations, we describe the structure and expression of the multiple RNA and protein products of the locus, as well as their evolutionary conservation among Drosophila. The gene produces at least six different protein isoforms, primarily through alternative promoter usage, generating kinases with virtually identical catalytic domains but variable N-terminal noncatalytic domains. The single known alternative splicing event generates a kinase with the insertion of six additional amino-acids in the catalytic domain. Two independent predicted genes nested within Doa introns actually encode additional alternative N-termini of the locus. An alternative polyadenylation site utilized exclusively during early embryogenesis generates a transcript with a short half-life, apparently to ensure a "burst" of kinase expression at the onset of development. Ecdysone induction of Doa transcripts affects all isoforms during pupariation. Finally, extensive conservation of amino-acid sequences of both the catalytic and N-terminal noncatalytic exons observed in alignments between D. melanogaster exons and the genome sequences of 11 other Drosophila species suggest that the multiple isoforms serve important and nonredundant functions.
Assuntos
Sequência Conservada , Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Regiões Promotoras Genéticas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Drosophila/enzimologia , Drosophila/crescimento & desenvolvimento , Ecdisona/farmacologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/efeitos dos fármacos , Isoenzimas/genética , Pupa/enzimologia , Pupa/genética , RNA Mensageiro/metabolismoRESUMO
Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.
Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Somatic sexual determination and behavior in Drosophila melanogaster are under the control of a genetic cascade initiated by Sex lethal (Sxl). In the female soma, SXL RNA-binding protein regulates the splicing of transformer (tra) transcripts into a female-specific form. The RNA-binding protein TRA and its cofactor TRA2 function in concert in females, whereas SXL, TRA, and TRA2 are thought to not function in males. To better understand sex-specific regulation of gene expression, we analyzed male and female head transcriptome datasets for expression levels and splicing, quantifying sex-biased gene expression via RNA-Seq and qPCR. Our data uncouple the effects of Sxl and tra/tra2 in females in the-sex-biased alternative splicing of head transcripts from the X-linked locus found in neurons (fne), encoding a pan-neuronal RNA-binding protein of the ELAV family. We show that FNE protein levels are downregulated by Sxl in female heads, also independently of tra/tra2. We argue that this regulation may have important sexually dimorphic consequences for the regulation of nervous system development or function.
Assuntos
Processamento Alternativo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Ligados ao Cromossomo X , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Alelos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Mutação , TranscriptomaRESUMO
SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos.
Assuntos
Apoptose/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , Alelos , Sequência de Aminoácidos , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Olho/embriologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Loci Gênicos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Organogênese/genética , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismoRESUMO
DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa alleles induce somatic female-to-male sex transformations, which can be enhanced when combined with mutations in loci encoding SR and SR-like proteins. The Doa locus encodes six different kinases, of which a 69-kDa isoform is expressed solely in females. Expression of this isoform is itself under the regulation of the somatic sex determination regulatory network, thus forming a putative positive autoregulatory loop which would reinforce the choice of the female cell-fate. We speculate that this loop is part of the evolutionary ancestral sex-determination machinery, based upon evidence demonstrating the existence of an autoregulatory loop involving TRA and TRA2 in several other insect species.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Processos de Determinação Sexual , Processamento Alternativo/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Isoenzimas/metabolismo , Masculino , Fosforilação , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sobrevivência Celular , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Humanos , Larva/crescimento & desenvolvimento , Masculino , Movimento , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Fosforilação , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transgenes/genéticaRESUMO
We identify Kette, a key regulator of actin polymerization, as a substrate for Drosophila protein tyrosine phosphatase PTP61F, as well as for dAbl tyrosine kinase. We further show that dAbl is a direct substrate for PTP61F. Therefore, Kette phosphotyrosine levels are regulated both directly and indirectly by PTP61F. Kette and PTP61F genetically interact in the regulation of F-actin organization in pupal eye discs, suggesting that tyrosine phosphorylation is essential for the proper regulation of Kette-mediated actin dynamics. This hypothesis was confirmed by demonstrating the loss of Kette-mediated F-actin organization and lamella formation in S2 cells in a Kette Y482F mutant in which the dAbl phosphorylation site was eliminated. Our results establish for the first time that PTP61F and dAbl ensure proper actin organization through the coordinated and reversible tyrosine phosphorylation of Kette.
Assuntos
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Quinases/metabolismo , Actinas/genética , Animais , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Humanos , Proteínas dos Microfilamentos/genética , Fosforilação , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Quinases/genética , Tirosina/metabolismoRESUMO
Members of the highly conserved LAMMER family of protein kinases have been described in all eukaryotes. LAMMER kinases possess markedly similar peptide motifs in their kinase catalytic subdomains that are responsible for phosphotransfer and substrate interaction, suggesting that family members serve similar functions in widely diverged species. This hypothesis is supported by their phosphorylation of SR and SR-related proteins in diverged species. Here we describe a 3-dimensional homology model of the catalytic domain of DOA, a representative LAMMER kinase, encoded by the Drosophila locus Darkener of apricot (Doa). Homology modeling of DOA based on a Sky1p template revealed a highly conserved structural framework within conserved core regions. These adopt typical kinase folding like that of other protein kinases. However, in contrast to Sky1p, some structural features, such as those in helix alphaC suggest that the DOA kinase is not a constitutively active enzyme but requires activation. This may occur by phosphorylation within an activation loop that forms a broad turn and in which interactions between the side chains occur across the loop. The fold of the activation loop is stabilized through interactions with residues in the C-terminal tail, which is not part of the conserved kinase core and is variable among protein kinases. Immediately following the activation loop in the segment between the beta9 sheet and helix alphaF is a P + 1 loop. The electrostatic surface potential of the DOA substrate-binding groove is largely negative, as it is in other known SR protein kinases, suggesting that DOA substrates must be basic. All differences between D. melanogaster and other Drosophila species are single amino acid changes situated in regions outside of any alpha-helices or beta-sheets, and after modeling these had absolutely no visible effect on protein structure. The absence of evolved amino acid changes among 12 Drosophila species that would cause at least predictable changes in DOA structure indicate that evolution has already selected evolved mutations for having minimal effect on kinase structure.
Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/enzimologia , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de SequênciaRESUMO
LAMMER protein kinases are ubiquitous throughout eukaryotes, including multiple paralogues in mammals. Members are characterized by similar overall structure and highly identical amino acid sequence motifs in catalytic subdomains essential for phosphotransfer and interaction with substrates. LAMMER kinases phosphorylate and regulate the activity of the SR protein class of pre-mRNA splicing components, both in vitro and in vivo. In this study, we define an optimum in vitro consensus phosphorylation site for three family members using an oriented degenerate peptide library approach. We also examine the substrate specificity and interactions of several LAMMER protein kinases from widely diverged species with potential substrates, including their own N-termini, predicted to be substrates by the peptide-based approach. Although the optimal in vitro consensus phosphorylation site for these kinases is remarkably similar for short peptides, distinct substrate preferences are revealed by in vitro phosphorylation of intact proteins. This finding suggests that these kinases may possess varied substrates in vivo, and thus the multiple LAMMER kinases present in higher eukaryotes may perform differentiable functions. These results further demonstrate that these kinases can phosphorylate a number of substrates in addition to SR proteins, suggesting that they may regulate multiple cellular processes, in addition to the alternative splicing of pre-mRNAs.