Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 157(3): 580-94, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24726434

RESUMO

Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP:


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Correpressoras/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo
2.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793956

RESUMO

Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to replication and cell killing by oHSV with deletion of the γ34.5 genes (γ34.5- oHSV), while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV-1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5- oHSV infection of GSCs but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5- oHSV. The difference in degrees of permissivity between GSCs and ScGCs to γ34.5- oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer-selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are nonpermissive for γ34.5- HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5- HSV. We have identified a cell type-specific innate response to HSV-1 that limits oncolytic activity in glioblastoma.


Assuntos
Neoplasias Encefálicas/virologia , Deleção de Genes , Glioblastoma/virologia , Células-Tronco Neoplásicas/virologia , Simplexvirus/fisiologia , Proteínas Virais/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Chlorocebus aethiops , Glioblastoma/metabolismo , Glioblastoma/terapia , Herpes Simples/genética , Células-Tronco Neoplásicas/metabolismo , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Simplexvirus/genética , Células Vero , Proteínas Virais/metabolismo , Replicação Viral
3.
Int J Cancer ; 141(11): 2348-2358, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28801914

RESUMO

Despite the current standard of multimodal management, glioblastoma (GBM) inevitably recurs and effective therapy is not available for recurrent disease. A subset of tumor cells with stem-like properties, termed GBM stem-like cells (GSCs), are considered to play a role in tumor relapse. Although oncolytic herpes simplex virus (oHSV) is a promising therapeutic for GBM, its efficacy against recurrent GBM is incompletely characterized. Transforming growth factor beta (TGF-ß) plays vital roles in maintaining GSC stemness and GBM pathogenesis. We hypothesized that oHSV and TGF-ß inhibitors would synergistically exert antitumor effects for recurrent GBM. Here we established a panel of patient-derived recurrent tumor models from GBMs that relapsed after postsurgical radiation and chemotherapy, based on GSC-enriched tumor sphere cultures. These GSCs are resistant to the standard-of-care temozolomide but susceptible to oHSVs G47Δ and MG18L. Inhibition of TGF-ß receptor kinase with selective targeted small molecules reduced clonogenic sphere formation in all tested recurrent GSCs. The combination of oHSV and TGF-ßR inhibitor was synergistic in killing recurrent GSCs through, in part, an inhibitor-induced JNK-MAPK blockade and increase in oHSV replication. In vivo, systemic treatment with TGF-ßR inhibitor greatly enhanced the antitumor effects of single intratumoral oHSV injections, resulting in cures in 60% of mice bearing orthotopic recurrent GBM. These results reveal a novel synergistic interaction of oHSV therapy and TGF-ß signaling blockade, and warrant further investigations aimed at clinical translation of this combination strategy for GBM patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Terapia Viral Oncolítica/métodos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Western Blotting , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Simplexvirus , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 110(29): 12006-11, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23754388

RESUMO

Glioblastoma (World Health Organization grade IV) is an aggressive adult brain tumor that is inevitably fatal despite surgery, radiation, and chemotherapy. Treatment failures are attributed to combinations of cellular heterogeneity, including a subpopulation of often-resistant cancer stem cells, aberrant vasculature, and noteworthy immune suppression. Current preclinical models and treatment strategies do not incorporate or address all these features satisfactorily. Herein, we describe a murine glioblastoma stem cell (GSC) model that recapitulates tumor heterogeneity, invasiveness, vascularity, and immunosuppressive microenvironment in syngeneic immunocompetent mice and should prove useful for a range of therapeutic studies. Using this model, we tested a genetically engineered oncolytic herpes simplex virus that is armed with an immunomodulatory cytokine, interleukin 12 (G47-mIL12). G47Δ-mIL12 infects and replicates similarly to its unarmed oncolytic herpes simplex virus counterpart in mouse 005 GSCs in vitro, whereas in vivo, it significantly enhances survival in syngeneic mice bearing intracerebral 005 tumors. Mechanistically, G47-mIL12 targets not only GSCs but also increases IFN-γ release, inhibits angiogenesis, and reduces the number of regulatory T cells in the tumor. The increased efficacy is dependent upon T cells, but not natural killer cells. Taken together, our findings demonstrate that G47Δ-mIL12 provides a multifaceted approach to targeting GSCs, tumor microenvironment, and the immune system, with resultant therapeutic benefit in a stringent glioblastoma model.


Assuntos
Modelos Animais de Doenças , Glioblastoma/terapia , Imunoterapia/métodos , Interleucina-12/metabolismo , Terapia Viral Oncolítica/métodos , Simplexvirus/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glioblastoma/virologia , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas
5.
J Neurooncol ; 121(1): 91-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25213669

RESUMO

Anti-angiogenic therapy is a promising therapeutic strategy for the highly vascular and malignant brain tumor, glioblastoma (GBM), although current clinical trials have failed to demonstrate an extension in overall survival. The small molecule tyrosine kinase inhibitor axitinib that targets vascular endothelial growth factor receptor, potently inhibits angiogenesis and has single-agent clinical activity in non-small cell lung, thyroid, and advanced renal cell cancer. Here we show that axitinib exerts direct cytotoxic activity against a number of patient-derived GBM stem cell (GSCs) and an endothelial cell line, and inhibits endothelial tube formation in vitro. Axitinib treatment of mice bearing hypervascular intracranial tumors generated from human U87 glioma cells, MGG4 GSCs and mouse 005 GSCs significantly extended survival that was associated with decreases in tumor-associated vascularity. We thus show for the first time the anti-angiogenic effect and survival prolongation provided by systemic single agent treatment with axitinib in preclinical orthotopic GBM models including clinically relevant GSC models. These results support further investigation of axitinib as an anti-angiogenic agent for GBM.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imidazóis/farmacologia , Indazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Axitinibe , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Sobrevida
6.
Drugs Future ; 40(11): 739-749, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26855472

RESUMO

Malignant gliomas are the most common type of primary malignant brain tumor with no effective treatments. Current conventional therapies (surgical resection, radiation therapy, temozolomide (TMZ), and bevacizumab administration) typically fail to eradicate the tumors resulting in the recurrence of treatment-resistant tumors. Therefore, novel approaches are needed to improve therapeutic outcomes. Oncolytic viruses (OVs) are excellent candidates as a more effective therapeutic strategy for aggressive cancers like malignant gliomas since OVs have a natural preference or have been genetically engineered to selectively replicate in and kill cancer cells. OVs have been used in numerous preclinical studies in malignant glioma, and a large number of clinical trials using OVs have been completed or are underway that have demonstrated safety, as well as provided indications of effective antiglioma activity. In this review, we will focus on those OVs that have been used in clinical trials for the treatment of malignant gliomas (herpes simplex virus, adenovirus, parvovirus, reovirus, poliovirus, Newcastle disease virus, measles virus, and retrovirus) and OVs examined preclinically (vesicular stomatitis virus and myxoma virus), and describe how these agents are being used.

7.
Cancer Cell Int ; 14(1): 83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360068

RESUMO

BACKGROUND: Oncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells while sparing the adjacent normal tissue. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. In this study, the cytotoxicity of a third-generation oncolytic HSV, G47Δ, was investigated in different human HCC cell lines and in an immortalized human hepatic cell line. Additionally, subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ. METHODS: The HepG2, HepB, SMMC-7721, BEL-7404, and BEL-7405 human HCC cell lines and the HL-7702 human hepatic immortalized cell lines were infected with G47Δ at different multiplicities of infection (MOIs). The viability of infected cells was determined, and the G47Δ replication was identified by X-gal staining for LacZ expression. Two subcutaneous (s.c.) HCC tumor models of HCC were also established in Balb/c nude mice, which were intratumorally(i.t.) treated with either G47Δ or mock virus. Tumor volume and mouse survival times were documented. RESULTS: More than 95% of the HepG2, Hep3B,and SMMC-7721 HCC cells were killed on by day 5 after infection with a MOI's of 0.01. For the HL-7702 human hepatic immortalized cells, 100% of the cells were killed on by day 5 after infection with a MOI's of 0.01. The BEL-7404 HCC cell line was less susceptible with about 70% cells were killed by day 5 after infection with a MOI's of 0.01. Whereas the BEL-7405 HCC cells were the least susceptible, with only 30% of the cells were killed. Both the SMMC-7721 and BEL-7404 cells form aggressive sc tumor models. G47Δ replicates in the tumors, such that most of the tumors regressed after the G47Δ-treatment, and treated tumor-bearing mice survived much longer than the control animals. CONCLUSIONS: G47Δ effectively kills human HCC cells and an immortalized hepatic cell line at low MOI. Intra-tumor injection of G47Δ can induce a therapeutic effect and prolong the survival of treated mice bearing SMMC-7721 and BEL-7404 subcutaneously (s.c.) tumors. Thus, G47Δ may be useful as a novel therapeutic agent for HCC.

8.
Mol Ther ; 21(1): 68-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22929661

RESUMO

Only a subset of cancer patients inoculated with oncolytic herpes simplex virus (oHSV) type-1 has shown objective response in phase 1 and 2 clinical trials. This has raised speculations whether resistance of tumor cells to oHSV therapy may be a limiting factor. In this study, we have identified established and patient derived primary glioblastoma multiforme (GBM) stem cell lines (GSC) resistant to oHSV and also to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that has recently shown promise in preclinical and initial clinical studies. We created a recombinant oHSV bearing a secretable TRAIL (oHSV-TRAIL) and hypothesized that oHSV-TRAIL could be used as a cancer therapeutic to target a broad spectrum of resistant tumors in a mechanism-based manner. Using the identified resistant GBM lines, we show that oHSV-TRAIL downregulates extracellular signal-regulated protein kinase (ERK)-mitogen-activated protein kinase (MAPK) and upregulates c-Jun N-terminal kinase (JNK) and p38-MAPK signaling, which primes resistant GBM cells to apoptosis via activation of caspase-8, -9, and -3. We further show that oHSV-TRAIL inhibits tumor growth and invasiveness and increases survival of mice bearing resistant intracerebral tumors without affecting the normal tissues. This study sheds new light on the mechanism by which oHSV and TRAIL function in concert to overcome therapeutic-resistance, and provides an oncolytic virus based platform to target a broad spectrum of different cancer types.


Assuntos
Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/terapia , Células-Tronco Neoplásicas/patologia , Terapia Viral Oncolítica , Animais , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Invasividade Neoplásica , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
9.
Trends Mol Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886138

RESUMO

Herpes simplex virus type 1 (HSV-1) is a DNA virus and human pathogen used to construct promising therapeutic vectors. HSV-1 vectors fall into two classes: replication-selective oncolytic vectors for cancer therapy and defective non-replicative vectors for gene therapy. Vectors from each class can accommodate ≥30 kb of inserts, have been approved clinically, and demonstrate a relatively benign safety profile. Despite oncolytic HSV (oHSV) replication in tumors and elicited immune responses, the virus is well tolerated in cancer patients. Current non-replicative vectors elicit only limited immune responses. Seropositivity and immune responses against HSV-1 do not eliminate either the vector or infected cells, and the vectors can therefore be re-administered. In this review we highlight vectors that have been translated to the clinic and host-virus immune interactions that impact on the safety and efficacy of HSVs.

10.
J Immunother Cancer ; 12(5)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821716

RESUMO

Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.


Assuntos
Citocinas , Imunoterapia , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Citocinas/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Simplexvirus/imunologia , Simplexvirus/genética , Herpesvirus Humano 1/imunologia
11.
J Immunother Cancer ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599661

RESUMO

BACKGROUND: Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS: We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS: G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS: Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpes Simples , Terapia Viral Oncolítica , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos , Glioblastoma/patologia , Herpesvirus Humano 2 , Interleucina-2/uso terapêutico , Melanoma/terapia , Microambiente Tumoral , Estados Unidos
12.
J Virol ; 86(8): 4420-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345479

RESUMO

The ICP34.5 protein of herpes simplex virus (HSV) is involved in many aspects of viral pathogenesis; promoting neurovirulence, inhibiting interferon-induced shutoff of protein synthesis, interacting with PCNA and TBK1, inhibiting dendritic cell (DC) maturation, and binding to Beclin 1 to interfere with autophagy. Because of its key role in neuropathogenicity, the γ34.5 gene is deleted in all oncolytic HSVs (oHSVs) currently in clinical trial for treating malignant gliomas. Unfortunately, deletion of γ34.5 attenuates virus replication in cancer cells, especially human glioblastoma stem cells (GSCs). To develop new oHSVs for use in the brain and that replicate in GSCs, we explored the effect of deleting the γ34.5 Beclin 1 binding domain (BBD). To ensure cancer selectivity and safety, we inactivated the ICP6 gene (UL39, large subunit of ribonucleotide reductase), constructing ICP6 mutants with different γ34.5 genotypes: Δ68HR-6, intact γ34.5; Δ68H-6, γ34.5 BBD deleted; and 1716-6, γ34.5 deleted. Multimutated Δ68H-6 exhibited minimal neuropathogenicity in HSV-1-susceptible mice, as opposed to Δ68H and Δ68HR-6. It replicated well in human glioma cell lines and GSCs, effectively killing cells in vitro and prolonging survival of mice bearing orthotopic brain tumors. In contrast, 1716 and 1716-6 barely replicated in GSCs. Infection of glioma cells with Δ68H-6 and 1716-6 induced autophagy and increased phosphorylation of eIF2α, while inhibition of autophagy, by Beclin 1 short hairpin RNA (shRNA) knockdown or pharmacological inhibition, had no effect on virus replication or phosphorylated eIF2α (p-eIF2α) levels. Thus, Δ68H-6 represents a new oHSV vector that is safe and effective against a variety of brain tumor models.


Assuntos
Neoplasias Encefálicas/terapia , Deleção de Genes , Vírus Oncolíticos/genética , Proteínas Virais/genética , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/virologia , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Efeito Citopatogênico Viral/genética , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Ordem dos Genes , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , Mutação , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Proteínas Virais/metabolismo , Replicação Viral/genética
13.
Mol Ther ; 20(1): 37-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21915104

RESUMO

Bevacizumab (BEV) is an antiangiogenic drug approved for glioblastoma (GBM) treatment. However, it does not increase survival and is associated with glioma invasion. Angiostatin is an antiangiogenic polypeptide that also inhibits migration of cancer cells, but is difficult to deliver. Oncolytic viruses (OV) can potentially spread throughout the tumor, reach isolated infiltrating cells, kill them and deliver anticancer agents to uninfected cells. We have tested a combination treatment of BEV plus an OV expressing angiostatin (G47Δ-mAngio) in mice-bearing human GBM. Using a vascular intracranial human glioma model (U87) in athymic mice, we performed histopathological analysis of tumors treated with G47Δ-mAngio or BEV alone or in combination, followed tumor response by magnetic resonance imaging (MRI), and assessed animal survival. Our results indicate that injection of G47Δ-mAngio during BEV treatment allows increased virus spread, tumor lysis, and angiostatin-mediated inhibition of vascular endothelial growth factor (VEGF) expression and of BEV-induced invasion markers (matrix metalloproteinases-2 (MMP2), MMP9, and collagen). This leads to increased survival and antiangiogenesis and decreased invasive phenotypes. We show for the first time the possibility of improving the antiangiogenic effect of BEV while decreasing the tumor invasive-like phenotype induced by this drug, and demonstrate the therapeutic advantage of combining systemic and local antiangiogenic treatments with viral oncolytic therapy.


Assuntos
Inibidores da Angiogênese/genética , Inibidores da Angiogênese/uso terapêutico , Angiostatinas/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Glioma/terapia , Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Inibidores da Angiogênese/administração & dosagem , Angiostatinas/metabolismo , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Bevacizumab , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Terapia Genética , Vetores Genéticos/administração & dosagem , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Herpesvirus Humano 1/metabolismo , Humanos , Injeções , Camundongos , Camundongos Nus , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Front Cell Infect Microbiol ; 13: 1206111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325516

RESUMO

Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Simplexvirus/genética , Terapia Viral Oncolítica/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/terapia , Microambiente Tumoral
15.
Hum Gene Ther ; 34(17-18): 878-895, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37578106

RESUMO

Interleukin 2 (IL-2) plays a crucial role in T cell growth and survival, enhancing the cytotoxic activity of natural killer and cytotoxic T cells and thus functioning as a versatile master proinflammatory anticancer cytokine. The FDA has approved IL-2 cytokine therapy for the treatment of metastatic melanoma and metastatic renal cell carcinoma. However, IL-2 therapy has significant constraints, including a short serum half-life, low tumor accumulation, and life-threatening toxicities associated with high doses. Oncolytic viruses (OVs) offer a promising option for cancer immunotherapy, selectively targeting and destroying cancer cells while sparing healthy cells. Numerous studies have demonstrated the successful delivery of IL-2 to the tumor microenvironment without compromising safety using OVs such as vaccinia, Sendai, parvo, Newcastle disease, tanapox, and adenoviruses. Additionally, by engineering OVs to coexpress IL-2 with other anticancer transgenes, the immune properties of IL-2 can be further enhanced. Preclinical and clinical studies have shown promising antitumor effects of IL-2-expressing viral vectors, either alone or in combination with other anticancer therapies. This review summarizes the therapeutic potential of IL-2-expressing viral vectors and their antitumor mechanisms of action.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Humanos , Interleucina-2/genética , Interleucina-2/uso terapêutico , Citocinas , Vírus Oncolíticos/genética , Imunoterapia , Microambiente Tumoral
16.
Cancer Lett ; 572: 216363, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37619813

RESUMO

Oncolytic viruses (OVs) have emerged as a clinical therapeutic modality potentially effective for cancers that evade conventional therapies, including central nervous system malignancies. Rationally designed combinatorial strategies can augment the efficacy of OVs by boosting tumor-selective cytotoxicity and modulating the tumor microenvironment (TME). Photodynamic therapy (PDT) of cancer not only mediates direct neoplastic cell death but also primes the TME to sensitize the tumor to secondary therapies, allowing for the combination of two potentially synergistic therapies with broader targets. Here, we created G47Δ-KR, clinical oncolytic herpes simplex virus G47Δ that expresses photosensitizer protein KillerRed (KR). Optical properties and cytotoxic effects of G47Δ-KR infection followed by amber LED illumination (peak wavelength: 585-595 nm) were examined in human glioblastoma (GBM) and malignant meningioma (MM) models in vitro. G47Δ-KR infection of tumor cells mediated KR expression that was activated by LED and produced reactive oxygen species, leading to cell death that was more robust than G47Δ-KR without light. In vivo, we tested photodynamic-oncolytic virus (PD-OV) therapy employing intratumoral injection of G47Δ-KR followed by laser light tumor irradiation (wavelength: 585 nm) in GBM and MM xenografts. PD-OV therapy was feasible in these models and resulted in potent anti-tumor effects that were superior to G47Δ-KR alone (without laser light) or laser light alone. RNA sequencing analysis of post-treatment tumor samples revealed PD-OV therapy-induced increases in TME infiltration of variable immune cell types. This study thus demonstrated the proof-of-concept that G47Δ-KR enables PD-OV therapy for neuro-oncological malignancies and warrants further research to advance potential clinical translation.


Assuntos
Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Microambiente Tumoral
17.
Biomed Pharmacother ; 155: 113843, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271587

RESUMO

Approximately 20% of meningiomas are not benign (higher grade) and tend to relapse after surgery and radiation therapy. Malignant (anaplastic) meningioma (MM) is a minor subset of high-grade meningioma that is lethal with no effective treatment options currently. Oncolytic herpes simplex virus (oHSV) is a powerful anti-cancer modality that induces both direct cell death and anti-tumor immunity, and has shown activity in preclinical models of MM. However, clinically meaningful efficacy will likely entail rational mechanistic combination approaches. We here show that epigenome modulator histone deacetylase inhibitors (HDACi) increase anti-cancer effects of oHSV in human MM models, IOMM-Lee (NF2 wild-type) and CH157 (NF2 mutant). Minimally toxic, sub-micromolar concentrations of pan-HDACi, Trichostatin A and Panobinostat, substantively increased the infectability and spread of oHSV G47Δ within MM cells in vitro, resulting in enhanced oHSV-mediated killing of target cells when infected at low multiplicity of infection (MOI). Transcriptomics analysis identified selective alteration of mRNA processing and splicing modules that might underlie the potent anti-MM effects of combining HDACi and oHSV. In vivo, HDACi treatment increased intratumoral oHSV replication and boosted the capacity of oHSV to control the growth of human MM xenografts. Thus, our work supports further translational development of the combination approach employing HDACi and oHSV for the treatment of MM.


Assuntos
Herpes Simples , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Panobinostat , Recidiva Local de Neoplasia , Simplexvirus/genética , RNA Mensageiro
18.
Expert Opin Drug Discov ; 16(4): 391-410, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232188

RESUMO

Introduction: Despite diverse treatment modalities and novel therapies, many cancers and patients are not effectively treated. Cancer immunotherapy has recently achieved breakthrough status yet is not effective in all cancer types or patients and can generate serious adverse effects. Oncolytic viruses (OVs) are a promising new therapeutic modality that harnesses virus biology and host interactions to treat cancer. OVs, genetically engineered or natural, preferentially replicate in and kill cancer cells, sparing normal cells/tissues, and mediating anti-tumor immunity.Areas covered: This review focuses on OVs as cancer therapeutic agents from a historical perspective, especially strategies to boost their immunotherapeutic activities. OVs offer a multifaceted platform, whose activities are modulated based on the parental virus and genetic alterations. In addition to direct viral effects, many OVs can be armed with therapeutic transgenes to also act as gene therapy vectors, and/or combined with other drugs or therapies.Expert opinion: OVs are an amazingly versatile and malleable class of cancer therapies. They tend to target cellular and host physiology as opposed to specific genetic alterations, which potentially enables broad responsiveness. The biological complexity of OVs have hindered their translation; however, the recent approval of talimogene laherparepvec (T-Vec) has invigorated the field.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacologia , Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacologia , Herpesvirus Humano 1 , Humanos , Neoplasias/imunologia , Vírus Oncolíticos/imunologia
19.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578321

RESUMO

Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.


Assuntos
Imunoterapia/métodos , Neoplasias/prevenção & controle , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vacinação , Animais , Produtos Biológicos , Herpes Simples/genética , Herpesvirus Humano 1 , Humanos , Melanoma , Camundongos , Vírus Oncolíticos , Transgenes
20.
J Vis Exp ; (171)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34057449

RESUMO

Oncolytic viruses (OVs), such as the oncolytic herpes simplex virus (oHSV), are a rapidly growing treatment strategy in the field of cancer immunotherapy. OVs, including oHSV, selectively replicate in and kill cancer cells (sparing healthy/normal cells) while inducing anti-tumor immunity. Because of these unique properties, oHSV-based treatment strategies are being increasingly used for the treatment of cancer, preclinically and clinically, including FDA-approved talimogene laherparevec (T-Vec). Growth, purification, and titration are three essential laboratory techniques for any OVs, including oHSVs, before they can be utilized for experimental studies. This paper describes a simple step-by-step method to amplify oHSV in Vero cells. As oHSVs multiply, they produce a cytopathic effect (CPE) in Vero cells. Once 90-100% of the infected cells show a CPE, they are gently harvested, treated with benzonase and magnesium chloride (MgCl2), filtered, and subjected to purification using the sucrose-gradient method. Following purification, the number of infectious oHSV (designated as plaque-forming units or PFUs) is determined by a "plaque assay" in Vero cells. The protocol described herein can be used to prepare high-titer oHSV stock for in vitro studies in cell culture and in vivo animal experiments.


Assuntos
Herpes Simples , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Chlorocebus aethiops , Imunoterapia , Neoplasias/terapia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA