Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Brain ; 145(8): 2849-2868, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254410

RESUMO

Synaptic dysfunction is an early mechanism in Alzheimer's disease that involves progressively larger areas of the brain over time. However, how it starts and propagates is unknown. Here we show that amyloid-ß released by microglia in association with large extracellular vesicles (Aß-EVs) alters dendritic spine morphology in vitro, at the site of neuron interaction, and impairs synaptic plasticity both in vitro and in vivo in the entorhinal cortex-dentate gyrus circuitry. One hour after Aß-EV injection into the mouse entorhinal cortex, long-term potentiation was impaired in the entorhinal cortex but not in the dentate gyrus, its main target region, while 24 h later it was also impaired in the dentate gyrus, revealing a spreading of long-term potentiation deficit between the two regions. Similar results were obtained upon injection of extracellular vesicles carrying Aß naturally secreted by CHO7PA2 cells, while neither Aß42 alone nor inflammatory extracellular vesicles devoid of Aß were able to propagate long-term potentiation impairment. Using optical tweezers combined to time-lapse imaging to study Aß-EV-neuron interaction, we show that Aß-EVs move anterogradely at the axon surface and that their motion can be blocked through annexin-V coating. Importantly, when Aß-EV motility was inhibited, no propagation of long-term potentiation deficit occurred along the entorhinal-hippocampal circuit, implicating large extracellular vesicle motion at the neuron surface in the spreading of long-term potentiation impairment. Our data indicate the involvement of large microglial extracellular vesicles in the rise and propagation of early synaptic dysfunction in Alzheimer's disease and suggest a new mechanism controlling the diffusion of large extracellular vesicles and their pathogenic signals in the brain parenchyma, paving the way for novel therapeutic strategies to delay the disease.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Peptídeos beta-Amiloides , Animais , Hipocampo , Potenciação de Longa Duração , Camundongos , Microglia
2.
Biochem J ; 475(8): 1455-1472, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29599122

RESUMO

Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Endocitose/fisiologia , alfa Carioferinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Sinais de Localização Nuclear , alfa Carioferinas/genética
3.
Biochemistry ; 56(48): 6401-6408, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29039925

RESUMO

Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 µm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.


Assuntos
Membrana Celular/enzimologia , Exossomos/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Neuraminidase/metabolismo , Células HeLa , Humanos , Neuraminidase/genética
4.
Biochem Biophys Res Commun ; 483(1): 706-711, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27988335

RESUMO

BACKGROUND: An increasing number of studies on stem cells suggests that the therapeutic effect they exert is primarily mediated by a paracrine regulation through extracellular vesicles (EVs) giving solid grounds for stem cell EVs to be exploited as agents for treating diseases or for restoring damaged tissues and organs. Due to their capacity to differentiate in all embryonic germ layers, amniotic fluid stem cells (AFCs), represent a highly promising cell type for tissue regeneration, which however is still poorly studied and in turn underutilized. In view of this, we conducted a first investigation on the expression of human hTERT gene - known to be among the key triggers of organ regeneration - in AFCs and in the EVs they secrete. METHODS: Isolated AFCs were evaluated by RT-qPCR for hTERT expression. The clones expressing the highest levels of transcript, were analyzed by Immunofluorescence imaging and Nuclear/cytoplasmic fractionation in order to evaluate hTERT subcellular localization. We then separated EVs from FBS depleted culture medium by serial (ultra) centrifugations steps and characterized them using Western blotting, Atomic force Microscopy and Nanoplasmonic assay. RESULTS: We first demonstrated that primary cultures of AFCs express the gene hTERT at different levels. Then we evidenced that in AFCs with the higher transcript levels, the hTERT protein is present in the nuclear and cytoplasmic compartment. Finally, we found that cytosolic hTERT is embodied in the EVs that AFCs secrete in the extracellular milieu. CONCLUSIONS: Our study demonstrates for the first time the expression of the full protein hTERT by AFCs and its release outside the cell mediated by EVs, indicating a new extra telomeric role for this protein. This finding represents an initial but crucial evidence for considering AFCs derived EVs as new potential sources for tissue regeneration.


Assuntos
Líquido Amniótico/citologia , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Células-Tronco/enzimologia , Telomerase/metabolismo , Western Blotting , Técnicas de Cultura de Células , Separação Celular , Vesículas Extracelulares/enzimologia , Humanos , Microscopia de Força Atômica , Regeneração , Células-Tronco/fisiologia , Telomerase/genética , Transcrição Gênica
5.
Adv Sci (Weinh) ; 11(29): e2400533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822532

RESUMO

Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.


Assuntos
Biomarcadores , Vesículas Extracelulares , Peptídeos , Vesículas Extracelulares/metabolismo , Humanos , Peptídeos/metabolismo , Biomarcadores/metabolismo
6.
Traffic ; 12(11): 1604-19, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810154

RESUMO

Adaptor protein (AP) complexes are key factors for the spatial and temporal regulation of intracellular trafficking events. Four complexes (AP-1, -2, -3, -4) are known, among which AP-4 is only poorly characterized. Recent work suggests a role for AP-4 in the intracellular trafficking of the ß-amyloid precursor protein and molecular genetics showed that the loss of functional AP-4 is associated with congenital neuronal disorders of severe cognitive dysfunction. To unravel the molecular mechanisms controlling AP-4 functions, we established the intracellular expression of recombinant AP-4 complex. This approach combined with the analysis of mutant complexes allowed us to discover that the epsilon adaptin hinge-ear region has a function in membrane recruitment of AP-4. We further show that this process is phosphorylation dependent and involves PP2A-like protein phosphatases and a staurosporine-sensitive kinase. Deletion of the residues 839-871 in the carboxy-terminal region of the hinge of epsilon adaptin abrogated the membrane/cytosol recycling of AP-4. As targets of phosphorylation, we identified three serine residues: S847, S868 and S871. We conclude that the terminal hinge region and the appendage of the AP-4 epsilon subunit are involved in membrane association in a process that is controlled by phosphorylation and dephosphorylation events.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Subunidades do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas de Membrana/metabolismo , Complexo 4 de Proteínas Adaptadoras/genética , Subunidades do Complexo de Proteínas Adaptadoras/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Células Tumorais Cultivadas
7.
Nanoscale Adv ; 5(18): 4703-4717, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705771

RESUMO

To be profitably exploited in medicine, nanosized systems must be endowed with biocompatibility, targeting capability, the ability to evade the immune system, and resistance to clearance. Currently, biogenic nanoparticles, such as extracellular vesicles (EVs), are intensively investigated as the platform that naturally recapitulates these highly needed characteristics. EV native targeting properties and pharmacokinetics can be further augmented by decorating the EV surface with specific target ligands as antibodies. However, to date, studies dealing with the functionalization of the EV surface with proteins have never considered the protein corona "variable", namely the fact that extrinsic proteins may spontaneously adsorb on the EV surface, contributing to determine the surface, and in turn the biological identity of the EV. In this work, we explore and compare the two edge cases of EVs modified with the antibody Cetuximab (CTX) by chemisorption of CTX (through covalent binding via biorthogonal click-chemistry) and by formation of a physisorbed CTX corona. The results indicate that (i) no differences exist between the two formulations in terms of binding affinity imparted by molecular recognition of CTX versus its natural binding partner (epidermal growth factor receptor, EGFR), but (ii) significant differences emerge at the cellular level, where CTX-EVs prepared by click chemistry display superior binding and uptake toward target cells, very likely due to the higher robustness of the CTX anchorage.

8.
J Extracell Vesicles ; 12(10): e12349, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855042

RESUMO

The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.


Assuntos
Vesículas Extracelulares , Microscopia Crioeletrônica , Vesículas Extracelulares/química , Microscopia de Força Atômica/métodos , Lipopolissacarídeos , Lipoproteínas/análise
9.
J Extracell Biol ; 1(9): e57, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38938771

RESUMO

Antithrombin (AT) is a glycoprotein produced by the liver and a principal antagonist of active clotting proteases. A deficit in AT function leads to AT qualitative deficiency, challenging to diagnose. Here we report that active AT may travel physiosorbed on the surface of plasma extracellular vesicles (EVs), contributing to form the "EV-protein corona." The corona is enriched in specific AT glycoforms, thus suggesting glycosylation to play a key role in AT partitioning between EVs and plasma. Differences in AT glycoform composition of the corona of EVs separated from plasma of healthy and AT qualitative deficiency-affected subjects were also noticed. This suggests deconstructing the plasma into its nanostructured components, as EVs, could suggest novel directions to unravel pathophysiological mechanisms.

10.
J Extracell Biol ; 1(10): e63, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939213

RESUMO

Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, "The Extracellular Vesicle Foundry" (evFOUNDRY) and "Extracellular vesicles from a natural source for tailor-made nanomaterials" (VES4US), organized a workshop entitled "massivEVs" to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during "massivEVs", the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.

12.
Int J Mol Med ; 47(2): 533-546, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416118

RESUMO

Parkinson's disease (PD) is an important disabling age­related disorder and is the second most common neurodegenerative disease. Currently, no established molecular biomarkers exist for the early diagnosis of PD. Circulating microRNAs (miRNAs), either vesicle­free or encapsulated in extracellular vesicles (EVs), have emerged as potential blood­based biomarkers also for neurodegenerative diseases. In this exploratory study, we focused on miR­34a­5p because of its well­documented involvement in neurobiology. To explore a differential profile of circulating miR­34a­5p in PD, PD patients and age­matched control subjects were enrolled. Serial ultracentrifugation steps and density gradient were used to separate EV subpopulations from plasma according to their different sedimentation properties (Large, Medium, Small EVs). Characterization of EV types was performed using western blotting and atomic force microscopy (AFM); purity from protein contaminants was checked with the colorimetric nanoplasmonic assay. Circulating miR­34a­5p levels were evaluated using qPCR in plasma and in each EV type. miR­34a­5p was significantly up­regulated in small EVs devoid of exogenous protein contaminants (pure SEVs) from PD patients and ROC analysis indicated a good diagnostic performance in discriminating patients from controls (AUC=0.74, P<0.05). Moreover, miR­34a­5p levels in pure SEVs were associated with disease duration, Hoehn and Yahr and Beck Depression Inventory scores. These results underline the necessity to examine the miRNA content of each EV subpopulation to identify miRNA candidates with potential diagnostic value and lay the basis for future studies to validate the overexpression of circulating miR­34a­5p in PD via the use of pure SEVs.


Assuntos
MicroRNA Circulante/sangue , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , MicroRNAs/sangue , Doença de Parkinson/sangue , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
13.
J Extracell Vesicles ; 9(1): 1741174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341767

RESUMO

Identification of extracellular vesicle (EV) subpopulations remains an open challenge. To date, the common strategy is based on searching and probing set of molecular components and physical properties intended to be univocally characteristics of the target subpopulation. Pitfalls include the risk to opt for an unsuitable marker set - which may either not represent the subpopulation or also cover other unintended subpopulations - and the need to use different characterization techniques and equipment. This approach focused on specific markers may result inadequate to routinely deal with EV subpopulations that have an intrinsic high level of heterogeneity. In this paper, we show that Fourier-transform Infrared (FT-IR) spectroscopy can provide a collective fingerprint of EV subpopulations in one single experiment. FT-IR measurements were performed on large (LEVs, ~600 nm), medium (MEVs, ~200 nm) and small (SEVs ~60 nm) EVs enriched from two different cell lines medium: murine prostate cancer (TRAMP-C2) and skin melanoma (B16). Spectral regions between 3100-2800 cm-1 and 1880-900 cm-1, corresponding to functional groups mainly ascribed to lipid and protein contributions, were acquired and processed by Principal Component Analysis (PCA). LEVs, MEVs and SEVs were separately grouped for both the considered cell lines. Moreover, subpopulations of the same size but from different sources were assigned (with different degrees of accuracy) to two different groups. These findings demonstrate that FT-IR has the potential to quickly fingerprint EV subpopulations as a whole, suggesting an appealing complement/alternative for their characterization and grading, extendable to healthy and pathological EVs and fully artificial nanovesicles.

14.
PLoS One ; 15(3): e0229914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163452

RESUMO

Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely mediated through paracrine actions. Currently, extracellular vesicles (EVs) released by MSCs are major mediators of these paracrine effects. We evaluated whether rat-bone-marrow-MSC-derived EVs (rBMSCs-EVs) can ameliorate tendon injury in an in vivo rat model. Pro-collagen1A2 and MMP14 protein are expressed in rBMSC-EVs, and are important factors for extracellular-matrix tendon-remodeling. In addition, we found pro-collagen1A2 in rBMSC-EV surface-membranes by dot blot. In vitro on cells isolated from Achilles tendons, utilized as rBMSC -EVs recipient cells, EVs at both low and high doses induce migration of tenocytes; at higher concentration, they induce proliferation and increase expression of Collagen type I in tenocytes. Pretreatment with trypsin abrogate the effect of EVs on cell proliferation and migration, and the expression of collagen I. When either low- or high-dose rBMSCs-EVs were injected into a rat-Achilles tendon injury-model (immediately after damage), at 30 days, rBMSC-EVs were found to have accelerated the remodeling stage of tendon repair in a dose-dependent manner. At histology and histomorphology evaluation, high doses of rBMSCs-EVs produced better restoration of tendon architecture, with optimal tendon-fiber alignment and lower vascularity. Higher EV-concentrations demonstrated greater expression of collagen type I and lower expression of collagen type III. BMSC-EVs hold promise as a novel cell-free modality for the management of tendon injuries.


Assuntos
Tendão do Calcâneo/lesões , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/patologia , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Projetos Piloto , Ratos , Traumatismos dos Tendões/patologia , Cicatrização
15.
Artigo em Inglês | MEDLINE | ID: mdl-32117903

RESUMO

This protocol paper describes how to assign a purity grade and to subsequently titrate extracellular vesicle (EV) solutions of a few microliters in volume by microplate COlorimetric NANoplasmonic (CONAN) assay. The CONAN assay consists of a solution of gold nanoparticles (AuNPs) into which the EV preparation is added. The solution turns blue if the EV preparation is pure, whereas it stays red if soluble exogenous single and aggregated proteins (SAPs; often referred to as protein contaminants) are present. The color change is visible by the naked eye or can be quantified by UV-Vis spectroscopy, providing an index of purity (a unique peculiarity to date). The assay specifically targets SAPs, and not the EV-related proteins, with a detection limit <50 ng/µl (an order of magnitude higher resolution than that of the Bradford protein assay). For pure solutions, the assay also allows for determining the EV number, as the color shift is linearly dependent on the AuNP/EV molar ratio. Instead, it automatically reports if the solution bears SAP contaminants, thus avoiding counting artifacts. The CONAN assay proves to be robust and reliable and displays very interesting performances in terms of cost (inexpensive reagents, run by standard microplate readers), working volumes (1-2 µl of sample required), and time (full procedure takes <1 h). The assay is applicable to all classes of natural and artificial lipid microvesicles and nanovesicles.

16.
Int J Mol Med ; 43(6): 2303-2318, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31017260

RESUMO

Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA­carriers were separated from the plasma of young participants with DS and their non­trisomic siblings and miRNAs were extracted. A microarray­based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR­16­5p, miR­99b­5p and miR­144­3p. These miRNAs were then profiled for 15 pairs of DS and non­trisomic sibling couples by reverse transcription­quantitative polymerase chain reaction (RT­qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non­trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS­associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.


Assuntos
Síndrome de Down/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Down/sangue , Feminino , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/isolamento & purificação , Nanopartículas/química , Adulto Jovem
17.
Int J Mol Med ; 44(2): 768, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31173160

RESUMO

After the publication of the above paper, the authors noted that the names of a couple of the authors listed on the paper were associated with the wrong affliation: Specifically, the eighth and ninth listed authors, Francesca Antonaros and Allison Piovesan, are located at DIMES at the University of Florence (fourth affiliation address), not at CSGI, the Research Center for Colloids and Nanoscience in Florence (third affliation address). Therefore, the author and affiliation details for this paper should have been presented as follows: ALESSANDRO SALVI1, MARIKA VEZZOLI2, SARA BUSATTO1, LUCIA PAOLINI1,3, TERESA FARANDA1, EDOARDO ABENI1, MARIA CARACAUSI4, FRANCESCA ANTONAROS4, ALLISON PIOVESAN4, CHIARA LOCATELLI5, GUIDO COCCHI5,6, GUALTIERO ALVISI7, GIUSEPPINA DE PETRO1, DORIS RICOTTA1, PAOLO BERGESE1,3 and ANNALISA RADEGHIERI1,3. 1Department of Molecular and Translational Medicine, University of Brescia; 2Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, I­25123 Brescia; 3CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I­50019 Florence; 4Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna; 5Neonatology Unit, St. Orsola­Malpighi Polyclinic; 6Department of Medical and Surgical Sciences (DIMEC), University of Bologna, I­40138 Bologna; 7Department of Molecular Medicine, University of Padua, I­35121 Padua, Italy. The authors regret that this error with the author affiliations for Francesca Antonaros and Allison Piovesan was not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [the original article was published in International Journal of Molecular Medicine 43: 2303­2318, 2018; DOI: 10.3892/ijmm.2019.4158].

18.
J Interferon Cytokine Res ; 28(3): 181-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18338950

RESUMO

We developed a real-time PCR assay to simultaneously measure the mRNA level of type I interferon (IFN) receptor (IFNAR) components in peripheral blood cells of children with chronic immune stimulation due to HIV infection. All patients were undergoing antiretroviral therapy and were divided into two groups on the basis of the induction of MxA mRNA, a marker of type I IFN bioactivity. We found that IFNAR-2 subunit mRNA was higher than that of the IFNAR-1 subunit, that the mRNA for the IFNAR-2.2 functional isoform was more expressed than that for the truncated IFNAR-2.1 isoform, and both were much more represented than that of the IFNAR-2.3 soluble isoform. We also demonstrated that soluble isoform mRNA was significantly diminished in the subgroup of patients with MxA mRNA below the cutoff value (determined as the 99th percentile of MxA measured in healthy controls). These results suggest that downregulation of the soluble receptor isoform, which would not compete with the functional isoform for binding to the target cytokine, would give type I IFN, eventually induced in these patients in the case of viral reactivation, the opportunity to promptly exert its antiviral activity.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/imunologia , Isoformas de Proteínas/sangue , Receptor de Interferon alfa e beta/sangue , Adolescente , Adulto , Terapia Antirretroviral de Alta Atividade , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Masculino , Isoformas de Proteínas/imunologia , RNA Mensageiro/sangue , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia
20.
Biomark Med ; 12(4): 383-391, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29441794

RESUMO

Extracellular vesicles (EVs) are cell-derived nanoparticles, involved in cell-to-cell communication, in both normal and pathological processes. Originating by the outward budding of the plasma membrane or released by exocytosis, they are natural cargoes for lipids, carbohydrates, proteins and nucleic acids. EV-based diagnostics promises unique advantages compared with conventional strategies involving whole body fluid analysis, including the reduction of biofluids complexity and more specific and sensitive detection of low abundance biomacromolecules. Besides EV cargoes, new breakthrough technologies are addressing EV 'colloidal properties' - including particle content, size and membrane mechanical properties - directly experienced by researchers to be critical factors in biomarkers discovery. This article focuses on the progresses in EV biophysical properties characterization as diagnostic tools for different pathological conditions.


Assuntos
Fenômenos Biofísicos , Diagnóstico , Vesículas Extracelulares/metabolismo , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA