Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 630: 1205-1215, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554742

RESUMO

Unique hydrological characteristics and complex topography can create wide-ranging dry season environmental heterogeneity in response to groundwater level across China's Jiangxi Province Poyang Lake wetland. Soil traits are one of several fluctuating environmental variables. To determine the effects of soil variables on stable isotope (δ13C and δ15N) abundances during decomposition, we performed a field experiment using Carex cinerascens along a groundwater level gradient (GT-L: -25 to -50cm, GT-LM: -15 to -25cm, GT-MH: -5 to -15cm, GT-H: 5 to -5cm) in a shallow lake. Twelve soil properties-including total organic carbon (TOC), nitrogen (N), pH, moisture, bulk density, clay, silt, sand, peroxidase, cellulase, microbial biomass carbon (MBC), and microbial biomass nitrogen-were measured in surface soil samples to assess soil environmental conditions. Analyses were performed to determine the effects of soil traits and lignin degradation on changes in stable isotope abundances. This study revealed that stable isotope abundances were significantly lower at high groundwater levels than at low groundwater levels. Lignin degradation was associated with a decrease in both δ13C and δ15N abundances. These two stable isotopes were positively related with soil N and bulk density, but negatively with pH and microbial quotient (MBC/TOC). Variation partitioning analysis (VPA) showed that soil variables and lignin decay rates explained 80.1% of the δ13C variation and 42.8% of the δ15N variation. Soil chemical and biological variables exhibited significant interactions with lignin decay rates, indicating they may affect stable isotope abundances via complex mechanisms. Our results indicate that the change in stable isotope abundances during decomposition may be affected directly by soil variables or indirectly through lignin degradation. Our results provide useful insight for understanding the roles of litter decomposition and soil traits in changing environmental conditions of seasonal floodplain wetlands.

2.
Sci Total Environ ; 596-597: 274-283, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28437646

RESUMO

The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca2+, Mg2+, alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA