Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 2, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606115

RESUMO

BACKGROUND: Root and butt rot of conifer trees caused by fungi belonging to the Heterobasidion annosum species complex is one of the most economically important fungal diseases in commercial conifer plantations throughout the Northern hemisphere. We investigated the interactions between Heterobasidion fungi and their host by conducting dual RNA-seq and chemical analysis on Norway spruce trees naturally infected by Heterobasidion spp. We analyzed host and pathogen transcriptome and phenolic and terpenoid contents of the spruce trees. RESULTS: Presented results emphasize the role of the phenylpropanoid and flavonoid pathways in the chemical defense of Norway spruce trees. Accumulation of lignans was observed in trees displaying symptoms of wood decay. A number of candidate genes with a predicted role in the higher level regulation of spruce defense responses were identified. Our data indicate a possible role of abscisic acid (ABA) signaling in the spruce defense against Heterobasidion infection. Fungal transcripts corresponding to genes encoding carbohydrate- and lignin-degrading enzymes, secondary metabolism genes and effector-like genes were expressed during the host colonization. CONCLUSIONS: Our results provide additional insight into defense strategies employed by Norway spruce trees against Heterobasidion infection. The potential applications of the identified candidate genes as markers for higher resistance against root and butt rot deserve further evaluation.


Assuntos
Basidiomycota/genética , Picea/microbiologia , Doenças das Plantas/microbiologia , RNA Fúngico/genética , RNA de Plantas/genética , Basidiomycota/metabolismo , Proteínas do Ovo/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Genes de Plantas/genética , Fenóis/metabolismo , Floema/metabolismo , Picea/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , RNA de Plantas/fisiologia , Análise de Sequência de RNA , Terpenos/metabolismo , Transcriptoma/genética , Proteínas de Xenopus/metabolismo , Quinases da Família src/metabolismo
2.
Fungal Genet Biol ; 126: 37-49, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763724

RESUMO

Heterobasidion parviporum Niemelä & Korhonen is a necrotrophic fungal pathogen of Norway spruce (Picea abies). The H. parviporum genome encodes numerous necrotrophic small secreted proteins (SSP) which might be important for promoting and sustaining the disease development. However, their transcriptional dynamics and plant defense response during infection are largely unknown. In this study, we identified a necrotrophic SSP named HpSSP35.8 and its coding gene was highly expressed in the pre-symptomatic phase of the host (Norway spruce) infection. We explored the impact of HpSSP35.8 on non-host Nicotiana benthamiana using Agrobacterium-mediated transient expression system under visible spectrum RGB imaging and chlorophyll fluorescence imaging. The results showed that HpSSP35.8 triggered a form of SSP-associated programmed cell death, accompanied by a decrease in the plant photosynthetic activity. Defense-related genes including WRKY12, ethylene response factor (ERF1α) and a chitinase gene PR4 were up-regulated in both HpSSP35.8-N. benthamiana interaction and H. parviporum-Norway spruce pathosystem. This study also highlighted the potential to use the chlorophyll fluorescence imaging approach to monitor both the indirect effects of SSP and also for the selection of other potential effector-like protein candidates.


Assuntos
Basidiomycota/patogenicidade , Clorofila/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Imagem Óptica , Fotossíntese , Picea/microbiologia
3.
BMC Genomics ; 19(1): 220, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580224

RESUMO

BACKGROUND: Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS: To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION: Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , Genoma Viral , Genômica/métodos , Picea/microbiologia , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Polimorfismo de Nucleotídeo Único
4.
BMC Genomics ; 17: 234, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980399

RESUMO

BACKGROUND: The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood. RESULTS: A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of 2179 bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some genes related to energy metabolism were also induced. CONCLUSIONS: The analysed data gives an insight into the activation of lignocellulose breakdown machinery of R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus at the genomic or transcriptomic level.


Assuntos
Coriolaceae/crescimento & desenvolvimento , Coriolaceae/genética , Hevea/microbiologia , Transcriptoma , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Lignina/metabolismo , Polissacarídeos/metabolismo , Análise de Sequência de RNA , Madeira/microbiologia
5.
BMC Genomics ; 16: 352, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943104

RESUMO

BACKGROUND: During their lifetime, conifer trees are exposed to numerous herbivorous insects. To protect themselves against pests, trees have developed a broad repertoire of protective mechanisms. Many of the plant's defence reactions are activated upon an insect attack, and the underlying regulatory mechanisms are not entirely understood yet, in particular in conifer trees. Here, we present the results of our studies on the transcriptional response and the volatile compounds production of Scots pine (Pinus sylvestris) upon the large pine weevil (Hylobius abietis) feeding. RESULTS: Transcriptional response of Scots pine to the weevil attack was investigated using a novel customised 36.4 K Pinus taeda microarray. The weevil feeding caused large-scale changes in the pine transcriptome. In total, 774 genes were significantly up-regulated more than 4-fold (p≤0.05), whereas 64 genes were significantly down-regulated more than 4-fold. Among the up-regulated genes, we could identify genes involved in signal perception, signalling pathways, transcriptional regulation, plant hormone homeostasis, secondary metabolism and defence responses. The weevil feeding on stem bark of pine significantly increased the total emission of volatile organic compounds from the undamaged stem bark area. The emission levels of monoterpenes and sesquiterpenes were also increased. Interestingly, we could not observe any correlation between the increased production of the terpenoid compounds and expression levels of the terpene synthase-encoding genes. CONCLUSIONS: The obtained data provide an important insight into the transcriptional response of conifer trees to insect herbivory and illustrate the massive changes in the host transcriptome upon insect attacks. Moreover, many of the induced pathways are common between conifers and angiosperms. The presented results are the first ones obtained by the use of a microarray platform with an extended coverage of pine transcriptome (36.4 K cDNA elements). The platform will further facilitate the identification of resistance markers with the direct relevance for conifer tree breeding.


Assuntos
Ingestão de Alimentos , Herbivoria , Pinus/fisiologia , Casca de Planta/fisiologia , Gorgulhos/fisiologia , Animais , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Homeostase , Pinus/citologia , Pinus/genética , Pinus/metabolismo , Casca de Planta/citologia , Casca de Planta/genética , Casca de Planta/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Transcrição Gênica , Compostos Orgânicos Voláteis/metabolismo
6.
Appl Environ Microbiol ; 81(22): 7869-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341215

RESUMO

Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.


Assuntos
Biodiversidade , Incêndios , Fungos/fisiologia , Microbiologia do Solo , Código de Barras de DNA Taxonômico , Finlândia , Sequenciamento de Nucleotídeos em Larga Escala , Estações do Ano , Análise de Sequência de DNA , Taiga
7.
Environ Microbiol ; 16(6): 1654-67, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286289

RESUMO

The success of many wood decaying fungi lies in their ability to overcome unfavourable environmental conditions within and outside of litter and wood debris. Although so much has been learned about the ecology, taxonomy and physiology of several wood decaying basidiomycete fungi, the molecular basis for their survival in a diverse range of substrates and ecological habitats has been very little studied. Using the wood decay fungus (Heterobasidion annosum s.s.) as a model, we investigated its transcriptomic response when exposed to several environmental stressors (high and low temperature, osmotic stress, oxidative stress and nutrient starvation) and during growth on specific pine wood compartments (bark, sapwood and heartwood). Among other genes and pathways, we documented the specific induction of the major facilitator superfamily 1 and cytochrome P450 families at low temperature, and protein kinases together with transcription factors during starvation. On the other hand, during saprotrophic growth, we observed the induction of many glycosyl hydrolases, three multi-copper oxidases (MCO), five manganese peroxidases (MnP) and one oxidoreductase which are specific for wood degradation. This is the first study providing insights on the potential mechanisms for adaptation to abiotic stresses and pine heartwood degradation in H. annosum s.s.


Assuntos
Basidiomycota/genética , Pinus sylvestris/microbiologia , Transcriptoma , Madeira/microbiologia , Adaptação Fisiológica , Basidiomycota/metabolismo , Análise por Conglomerados , Ecossistema , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Casca de Planta/microbiologia , Estresse Fisiológico
8.
EFSA J ; 22(4): e8715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38686342

RESUMO

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.V., the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant and insect resistant genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, a search for additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-9170 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations.

9.
EFSA J ; 22(4): e8716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681739

RESUMO

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × NK603 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-3670 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × NK603.

10.
EFSA J ; 22(1): e8489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250501

RESUMO

Following the submission of dossier GMFF-2022-9450 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect protected genetically modified maize MON 810, for food and feed uses (including pollen), excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 810 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in dossier GMFF-2022-9450 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 810.

11.
EFSA J ; 22(3): e8655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510324

RESUMO

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

12.
EFSA J ; 22(4): e8714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681741

RESUMO

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

13.
EFSA J ; 22(1): e8490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235311

RESUMO

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

14.
EFSA J ; 22(1): e8483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239495

RESUMO

Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

15.
Mol Biol Rep ; 40(7): 4605-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645035

RESUMO

The basidiomycete Heterobasidion annosum is the causative agent of butt and root rot disease of conifer trees and it's one of the most destructive conifer pathogen in the northern hemisphere. Because of the intrinsic difficulties in genome manipulation in this fungus, most studies have been focused on gene expression analysis using quantitative real time polymerase chain reaction (qPCR). qPCR is a powerful technique but its reliability resides in the correct selection of a set of reference genes used in the data normalization. In this study, we determined the expression stability of 11 selected reference genes in H. annosum. Almost nothing has so far been published about validation of a set of reference genes to be used in gene expression experiments in this fungus. Eleven reference genes were validated in H. annosum which was grown on three different substrates: pine bark, pine heartwood, and pine sapwood. Bestkeeper and NormFinder Excel-based software were used to evaluate the reference gene transcripts' stability. The results from these two programs indicated that three reference genes namely Tryp metab, RNA Pol3 TF, and Actin were stable in H. annosum in the conditions studied. Interestingly, the GAPDH transcript which has been extensively used in qPCR data normalization is not the best choice when a wide reference gene selection is available. This work represents the first extensive validation of reference genes in H. annosum providing support for gene expression studies and benefits for the wider forest pathology community.


Assuntos
Basidiomycota/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Biologia Computacional/métodos , Doenças das Plantas/microbiologia , Traqueófitas/microbiologia
16.
EFSA J ; 21(4): e07934, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37122285

RESUMO

Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape MS8, RF3 and MS8 × RF3 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-024 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape MS8, RF3 and MS8 × RF3.

17.
EFSA J ; 21(1): e07729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721864

RESUMO

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.

18.
EFSA J ; 21(6): e08031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37377664

RESUMO

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.

19.
EFSA J ; 21(6): e08011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284025

RESUMO

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

20.
EFSA J ; 21(1): e07730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698492

RESUMO

Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA