Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1427308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170680

RESUMO

Seizures produce autonomic symptoms, mainly sympathetic but also parasympathetic in origin. Within this context, the vagus nerve is a key player as it carries information from the different organs to the brain and vice versa. Hence, exploiting vagal neural traffic for seizure detection might be a promising tool to improve the efficacy of closed-loop Vagus Nerve Stimulation. This study developed a VENG detection algorithm that effectively detects seizures by emphasizing the loss of spontaneous rhythmicity associated with respiration in acute intrahippocampal Kainic Acid rat model. Among 20 induced seizures in six anesthetized rats, 13 were detected (sensitivity: 65%, accuracy: 92.86%), with a mean VENG-detection delay of 25.3 ± 13.5 s after EEG-based seizure onset. Despite variations in detection parameters, 7 out of 20 seizures exhibited no ictal VENG modifications and remained undetected. Statistical analysis highlighted a significant difference in Delta, Theta and Beta band evolution between detected and undetected seizures, in addition to variations in the magnitude of HR changes. Binomial logistic regression analysis confirmed that an increase in delta and theta band activity was associated with a decreased likelihood of seizure detection. This results suggest the possibility of distinct seizure spreading patterns between the two groups which may results in differential activation of the autonomic central network. Despite notable progress, limitations, particularly the absence of respiration recording, underscore areas for future exploration and refinement in closed-loop stimulation strategies for epilepsy management. This study constitutes the initial phase of a longitudinal investigation, which will subsequently involve reproducing these experiments in awake conditions with spontaneous recurrent seizures.

2.
Biomed Phys Eng Express ; 9(5)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406619

RESUMO

Objective.Phantoms that mimic healthy or diseased organ properties can complement animal models for surgical planning, training, and medical device development. If urodynamic studies rely on pressure-volume curves to assess lower urinary tract symptoms, there is an unsatisfied need for a bladder phantom that accurately mimics the bladder stretching capabilities and compliant behaviour during physiological filling.Approach.We demonstrate the suitability of water-soluble 3D-printed moulds as a versatile method to fabricate accurate phantoms with anatomical structures reconstructed from medical images. We report a phantom fabricated with silicone rubber. A wire net limits the silicone expansion to model the cystometric capacity. A mathematical model describes the pressure increase due to passive hyperelastic properties.Main results.The phantom reproduces the bladder's mechanical properties during filling. The pressure-volume curve measured on the phantom is typical of cystometric studies, with a compliance of 25.2 ± 1mlcmH2O-1.The root-mean-square error between the theoretical model and experimental data is 2.7cmH2O.The compliance, bladder wall thickness, cystometric capacity and pressure near the cystometric capacity of the phantom can be tuned to mimic various pathologies or human variability.Significance.The manufacturing method is suitable for fabricating bladder and other soft and hollow organ phantoms. The mathematical model provides a method to determine design parameters to model healthy or diseased bladders. Soft hollow organ phantoms can be used to complement animal experimentations for developing and validating medical devices aiming to be anchored on these organs or monitor their activity through pressure and strain measurement.


Assuntos
Pelve , Bexiga Urinária , Animais , Humanos , Bexiga Urinária/patologia , Pressão , Imagens de Fantasmas , Silicones
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083348

RESUMO

Infrared neural stimulation (INS) is a neuromodulation technique that involves short optical pulses delivered to the neural tissue, resulting in the initiation of action potentials. In this work, we studied the compound neural action potentials (CNAP) generated by INS in five ex vivo sciatic nerves. A 1470 nm laser emitting a sequence of 0.4 ms light pulses with a peak power of 10 W was used. A single 4 mJ stimulus is not capable of eliciting a nerve response. However, repetition of the optical stimuli resulted in the induction of CNAPs. Heat accumulation induced by repetition rates as high as 10 Hz may be involved in the increase in CNAP amplitude. This sensitization effect may help to reduce the pulse energy required to evoke CNAP. In addition, these results highlight the importance of investigating the role of the slow nerve temperature dynamics in INS.


Assuntos
Temperatura Alta , Raios Infravermelhos , Ratos , Animais , Nervo Isquiático/fisiologia , Potenciais de Ação/fisiologia , Potenciais Evocados
4.
Brain Sci ; 13(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002525

RESUMO

This paper investigates brain-behaviour associations between interictal epileptic discharges and cognitive performance in a population of children with self-limited focal epilepsy with centro-temporal spikes (SeLECTS). Sixteen patients with SeLECTS underwent an extensive neuropsychological assessment, including verbal short-term and episodic memory, non-verbal short-term memory, attentional abilities and executive function. Two quantitative EEG indices were analysed, i.e., the Spike Wave Index (SWI) and the Spike Wave Frequency (SWF), and one qualitative EEG index, i.e., the EEG score, was used to evaluate the spreading of focal SW to other parts of the brain. We investigated associations between EEG indices and neuropsychological performance with non-parametric Spearman correlation analyses, including correction for multiple comparisons. The results showed a significant negative correlation between (i) the awake EEG score and the Block Tapping Test, a visuo-spatial short-term memory task, and (ii) the sleep SWI and the Tower of London, a visuo-spatial planning task (pcorr < 0.05). These findings suggest that, in addition to the usual quantitative EEG indices, the EEG analysis should include the qualitative EEG score evaluating the spreading of focal SW to other parts of the brain and that neuropsychological assessment should include visuo-spatial skills.

5.
Front Robot AI ; 8: 672934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041277

RESUMO

Phase-change material-elastomer composite (PCMEC) actuators are composed of a soft elastomer matrix embedding a phase-change fluid, typically ethanol, in microbubbles. When increasing the temperature, the phase change in each bubble induces a macroscopic expansion of the matrix. This class of actuators is promising for soft robotic applications because of their high energy density and actuation strain, and their low cost and easy manufacturing. However, several limitations must be addressed, such as the high actuation temperature and slow actuation speed. Moreover, the lack of a consistent design approach limits the possibility to build PCMEC-based soft robots able to achieve complex tasks. In this work, a new approach to manufacture PCMEC actuators with different fluid-elastomer combinations without altering the quality of the samples is proposed. The influence of the phase-change fluid and the elastomer on free elongation and bending is investigated. We demonstrate that choosing an appropriate fluid increases the actuation strain and speed, and decreases the actuation temperature compared with ethanol, allowing PCMECs to be used in close contact with the human body. Similarly, by using different elastomer materials, the actuator stiffness can be modified, and the experimental results showed that the curvature is roughly proportional to the inverse of Young's modulus of the pure matrix. To demonstrate the potential of the optimized PCMECs, a kirigami-inspired voxel-based design approach is proposed. PCMEC cubes are molded and reinforced externally by paper. Cuts in the paper induce anisotropy into the structure. Elementary voxels deforming according to the basic kinematics (bending, torsion, elongation, compression and shear) are presented. The combination of these voxels into modular and reconfigurable structures could open new possibilities towards the design of flexible robots able to perform complex tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA