Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 55(5): 1756-1766, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29666528

RESUMO

The present study explores the possibility of using twin screw extruder for preparation of pregelatinized pasta. The effects of extrusion parameters feed moisture (28 and 32%), barrel temperature (60-105 °C) and screw speed (100-200 rpm) on pregelatinized pasta were investigated. Prepared pasta was analysed for quality characteristics in terms of cooking quality, degree of gelatinization, color, texture, pasting properties, bioactive composition. Results indicated that higher screw speed improved the cooking quality of pasta and decreased gruel solid loss. Degree of gelatinization revealed positive relation with temperature and feed moisture. Extrusion conditions, altered the color of pasta, a decrease in L*, increase in a* and b* values was observed. Higher peak viscosity was observed at lower barrel temperature and feed moisture. A significant retention in total phenolic content and flavonoid content was observed with higher feed moisture. Extrusion leads to increase in antioxidant activity and firmness upon increasing screw speed and feed moisture.

2.
Crit Rev Food Sci Nutr ; 57(11): 2321-2329, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26065315

RESUMO

Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.


Assuntos
Indústria Alimentícia/métodos , Engenharia de Proteínas/métodos , Biotecnologia/métodos , Alimentos , Proteínas/química , Proteínas/genética
3.
J Food Sci Technol ; 54(10): 2997-3009, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28974784

RESUMO

Broiler production at mass level has already been achieved and now emphasis is being laid on increasing meat quality by altering various characteristics of broiler meat. Appearance, texture, juiciness, wateriness, firmness, tenderness, odor and flavor are the most important and perceptible meat features that influence the initial and final quality judgment by consumers before and after purchasing a meat product. The quantifiable properties of meat such as water holding capacity, shear force, drip loss, cook loss, pH, shelf life, collagen content, protein solubility, cohesiveness, and fat binding capacity are indispensable for processors involved in the manufacture of value added meat products. Nutrition of birds has a significant impact on poultry meat quality and safety. It is well known that dietary fatty acid profiles are reflected in tissue fatty acid. Management of poultry meat production is reflected mostly on consumption features (juiciness, tenderness, flavour) of meat. After slaughter, biochemical changes, causing the conversion of muscle to meat, determine final meat quality. Postmortem carcass temperature has profound effect on rigor mortis and the physicochemical changes observed in PSE muscles are attributed to postmortem glycolysis, temperature, and pH. Primary processing and further processing have become a matter of concern with respect to nutritional quality of broiler meat. Genetic variation among birds could contribute to large differences in the rate of rigor mortis completion and meat quality. Heritability estimates for meat quality traits in broilers are amazingly high (0.35-0.81), making genetic selection a best tool for improvement of broiler meat quality.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26147251

RESUMO

Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.

5.
J Food Sci Technol ; 52(9): 6090-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26345034

RESUMO

A study was carried out to relate the hydration behaviour with processing conditions of low amylose content parboiled rice which was dried at various temperatures (40, 50 and 60 °C). The rehydration characteristics of the parboiled rice (dehusked only) was then studied at various soaking temperatures (30, 40 and 50 °C) and time ( upto 3 h at every 30 min interval) and equilibrium moisture content of rehydration (EMC) was determined. The data were tested on three hydration equations viz., Peleg's, Exponential and Weibull equations. The experimental data were used to determine the model parameters. The goodness of fit for the models were evaluated by coefficient of determination (R(2)) and sum of square error (SSE). The results were indicated that the Weibull model fits better than the exponential model and Peleg's equation. Also, water transfer to paddy, was described by applying the Fick's diffusion model and the moisture diffusivity (D) was calculated. The Diffusivity values varied between 1.06 and 4 × 10(-11) m(2)/s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA