Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Med Genet ; 61(1): 84-92, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37586836

RESUMO

BACKGROUND: The retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC). METHODS: We report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses. RESULTS: For the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype-phenotype correlations in RBP4 mutational spectrum. CONCLUSION: Dominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.


Assuntos
Anoftalmia , Microftalmia , Degeneração Retiniana , Gravidez , Feminino , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Microftalmia/genética , Anoftalmia/genética , Tretinoína/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/química , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
2.
Genet Med ; 25(8): 100856, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092537

RESUMO

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Assuntos
Microftalmia , Receptores do Ácido Retinoico , Humanos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides
3.
Hum Mol Genet ; 29(18): 3054-3063, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885237

RESUMO

Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye disorders in humans affecting ~12 per 100 000 live births. Currently, variants in over 100 genes are known to underlie these conditions. However, at least 40% of affected individuals remain without a clinical genetic diagnosis, suggesting variants in additional genes may be responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, an important class of developmental proteins, as yet uncharacterized in vertebrates. We identified five individuals with microphthalmia and/or coloboma from four independent families carrying homozygous or compound heterozygous predicted damaging variants in CAPN15. Several individuals had additional phenotypes including growth deficits, developmental delay and hearing loss. We generated Capn15 knockout mice that exhibited similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. We demonstrate widespread Capn15 expression throughout the brain and central nervous system, strongest during early development, and decreasing postnatally. Together, these findings demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may signify a new developmental pathway.


Assuntos
Calpaína/genética , Anormalidades do Olho/genética , Predisposição Genética para Doença , Malformações do Sistema Nervoso/genética , Animais , Surdez/genética , Surdez/patologia , Anormalidades do Olho/patologia , Feminino , Humanos , Masculino , Camundongos Knockout , Malformações do Sistema Nervoso/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo
4.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402090

RESUMO

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Assuntos
Encéfalo/anormalidades , Anormalidades do Olho/genética , Dedos/anormalidades , Mutação de Sentido Incorreto , Fenótipo , Ubiquitina-Proteína Ligases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
5.
Neuropathol Appl Neurobiol ; 48(2): e12771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648194

RESUMO

AIMS: TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS: We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS: All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS: This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.


Assuntos
Encéfalo/metabolismo , Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Proteínas de Transporte Vesicular/genética , Pré-Escolar , Feminino , Glicosilação , Humanos , Lactente , Fígado/metabolismo , Masculino , Distrofias Musculares/metabolismo , Mutação , Proteínas de Transporte Vesicular/metabolismo
6.
Am J Med Genet A ; 185(11): 3446-3458, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436830

RESUMO

The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution occurring with age. We report familial ASXL3 pathogenic variants, characterize the phenotype in mildly affected individuals and discuss nonpenetrance. We also discuss the role of missense variants in ASXL3. We delineate a variable but consistent phenotype. The most characteristic features are neurodevelopmental delay with consistently limited speech, significant neuro-behavioral issues, hypotonia, and feeding difficulties. Distinctive features include downslanting palpebral fissures, hypertelorism, tubular nose with a prominent nasal bridge, and low-hanging columella. The presented data will inform clinical management of individuals with ASXL3-related syndrome and improve interpretation of new ASXL3 sequence variants.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Variação Genética/genética , Humanos , Hipertelorismo/genética , Hipertelorismo/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Mutação/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Adulto Jovem
7.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343630

RESUMO

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Assuntos
Éxons , Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2C/genética , Adolescente , Ciclo Celular , Criança , Pré-Escolar , Humanos , Deficiência Intelectual/patologia , Adulto Jovem
8.
J Hum Genet ; 65(5): 487-491, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32015378

RESUMO

Microphthalmia, anophthalmia, and anterior segment dysgenesis are severe ocular developmental defects. There is a wide genetic heterogeneity leading to these ocular malformations. By using whole genome, exome and targeted sequencing in patients with ocular developmental anomalies, six biallelic pathogenic variants (including five novel variants) were identified in the PXDN gene in four families with microphthalmia and anterior segment dysgenesis. Only 11 different mutations (11 families) have been described in this gene to date. The phenotype of these patients is variable in severity, ranging from cataract and developmental glaucoma to complex microphthalmia. Interestingly, two unrelated patients of our series presented with an ocular phenotype including aniridia and microspherophakia. However, despite various phenotypic presentations and types of mutations, no genotype-phenotype correlation could be made. Thus, this work improves our knowledge of the recessive phenotype associated with biallelic variants in this gene and highlights the importance of screening PXDN in patients with anterior segment dysgenesis with or without microphthalmia.


Assuntos
Alelos , Anormalidades do Olho/genética , Microftalmia/genética , Mutação , Peroxidases/genética , Anormalidades do Olho/patologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Microftalmia/patologia
9.
J Med Genet ; 56(7): 444-452, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30842225

RESUMO

BACKGROUND: A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia. METHODS: Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq. RESULTS: Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3' UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS. CONCLUSION: These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yields.


Assuntos
Regiões 3' não Traduzidas , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Poli A , Alelos , Anoftalmia , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Escore Lod , Masculino , Microftalmia , Linhagem , Análise de Sequência de DNA , Inativação do Cromossomo X
10.
Hum Genet ; 138(8-9): 799-830, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30762128

RESUMO

Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.


Assuntos
Anoftalmia/genética , Anormalidades do Olho/genética , Microftalmia/genética , Animais , Exoma/genética , Olho/patologia , Humanos , Fenótipo , Síndrome
11.
Hum Genet ; 138(8-9): 1051-1069, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29974297

RESUMO

Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia ('Lenz'-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome ('Lenz') usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome.


Assuntos
Anormalidades Múltiplas/genética , Catarata/congênito , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Defeitos dos Septos Cardíacos/genética , Microftalmia/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Catarata/genética , Pré-Escolar , Anormalidades do Olho/genética , Feminino , Variação Genética/genética , Heterozigoto , Humanos , Lactente , Masculino , Fenótipo , Síndrome , Inativação do Cromossomo X/genética , Adulto Jovem
12.
Hum Genet ; 138(8-9): 1027-1042, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29464339

RESUMO

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.


Assuntos
Conexinas/genética , Anormalidades do Olho/genética , Mutação de Sentido Incorreto/genética , Catarata/genética , Estudos de Coortes , Proteínas do Olho/genética , Feminino , Junções Comunicantes/genética , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Cristalino/patologia , Masculino , Linhagem , Fenótipo
13.
Am J Med Genet A ; 176(4): 862-876, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29460469

RESUMO

In 2016, we described that missense variants in parts of exons 30 and 31 of CREBBP can cause a phenotype that differs from Rubinstein-Taybi syndrome (RSTS). Here we report on another 11 patients with variants in this region of CREBBP (between bp 5,128 and 5,614) and two with variants in the homologous region of EP300. None of the patients show characteristics typical for RSTS. The variants were detected by exome sequencing using a panel for intellectual disability in all but one individual, in whom Sanger sequencing was performed upon clinical recognition of the entity. The main characteristics of the patients are developmental delay (90%), autistic behavior (65%), short stature (42%), and microcephaly (43%). Medical problems include feeding problems (75%), vision (50%), and hearing (54%) impairments, recurrent upper airway infections (42%), and epilepsy (21%). Major malformations are less common except for cryptorchidism (46% of males), and cerebral anomalies (70%). Individuals with variants between bp 5,595 and 5,614 of CREBBP show a specific phenotype (ptosis, telecanthi, short and upslanted palpebral fissures, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum). 3D face shape demonstrated resemblance to individuals with a duplication of 16p13.3 (the region that includes CREBBP), possibly indicating a gain of function. The other affected individuals show a less specific phenotype. We conclude that there is now more firm evidence that variants in these specific regions of CREBBP and EP300 result in a phenotype that differs from RSTS, and that this phenotype may be heterogeneous.


Assuntos
Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , Mutação , Síndrome de Rubinstein-Taybi/genética , Adolescente , Alelos , Criança , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imageamento Tridimensional , Lactente , Masculino , Modelos Anatômicos , Fenótipo , Síndrome de Rubinstein-Taybi/diagnóstico
14.
J Med Genet ; 54(9): 613-623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735298

RESUMO

BACKGROUND: Mutations in forkhead box protein P1 (FOXP1) cause intellectual disability (ID) and specific language impairment (SLI), with or without autistic features (MIM: 613670). Despite multiple case reports no specific phenotype emerged so far. METHODS: We correlate clinical and molecular data of 25 novel and 23 previously reported patients with FOXP1 defects. We evaluated FOXP1 activity by an in vitro luciferase model and assessed protein stability in vitro by western blotting. RESULTS: Patients show ID, SLI, neuromotor delay (NMD) and recurrent facial features including a high broad forehead, bent downslanting palpebral fissures, ptosis and/or blepharophimosis and a bulbous nasal tip. Behavioural problems and autistic features are common. Brain, cardiac and urogenital malformations can be associated. More severe ID and NMD, sensorineural hearing loss and feeding difficulties are more common in patients with interstitial 3p deletions (14 patients) versus patients with monogenic FOXP1 defects (34 patients). Mutations result in impaired transcriptional repression and/or reduced protein stability. CONCLUSIONS: FOXP1-related ID syndrome is a recognisable entity with a wide clinical spectrum and frequent systemic involvement. Our data will be helpful to evaluate genotype-phenotype correlations when interpreting next-generation sequencing data obtained in patients with ID and/or SLI and will guide clinical management.


Assuntos
Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Transtorno do Espectro Autista/genética , Face/anormalidades , Feminino , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Transtornos da Linguagem/genética , Masculino , Transtornos das Habilidades Motoras/genética , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estabilidade Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Síndrome , Transcrição Gênica
15.
Hum Genet ; 136(1): 119-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27844144

RESUMO

Anophthalmia, microphthalmia, and coloboma are a genetically heterogeneous spectrum of developmental eye disorders and affect around 30 per 100,000 live births. OLFM2 encodes a secreted glycoprotein belonging to the noelin family of olfactomedin domain-containing proteins that modulate the timing of neuronal differentiation during development. OLFM2 SNPs have been associated with open angle glaucoma in a case-control study, and knockdown of Olfm2 in zebrafish results in reduced eye size. From a cohort of 258 individuals with developmental eye anomalies, we identified two with heterozygous variants in OLFM2: an individual with bilateral microphthalmia carrying a de novo 19p13.2 microdeletion involving OLFM2 and a second individual with unilateral microphthalmia and contralateral coloboma who had a novel single base change in the 5' untranslated region. Dual luciferase assays demonstrated that the latter variant causes a significant decrease in expression of OLFM2. Furthermore, RNA in situ hybridisation experiments using human developmental tissue revealed expression in relevant structures, including the lens vesicle and optic cup. Our study indicates that OLFM2 is likely to be important in mammalian eye development and disease and should be considered as a gene for human ocular anomalies.


Assuntos
Proteínas da Matriz Extracelular/genética , Anormalidades do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glicoproteínas/genética , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Estudos de Coortes , Olho/embriologia , Anormalidades do Olho/diagnóstico , Proteínas do Olho/genética , Deleção de Genes , Regulação da Expressão Gênica , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino
16.
J Med Genet ; 53(11): 768-775, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27412952

RESUMO

BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype-phenotype correlates and performed survival analysis to identify prognostic factors. RESULTS: We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. CONCLUSIONS: The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date.

17.
Am J Hum Genet ; 93(4): 765-72, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24075189

RESUMO

Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119(∗)]) and frameshift (c.1201_1202insCT [p.Ile403Serfs(∗)15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119(∗) and p.Ile403Serfs(∗)15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis.


Assuntos
Hérnia Diafragmática/genética , Microftalmia/genética , Mutação , Receptores do Ácido Retinoico/genética , Adolescente , Anoftalmia/genética , Anoftalmia/metabolismo , Exoma , Feminino , Hérnia Diafragmática/metabolismo , Humanos , Recém-Nascido , Masculino , Microftalmia/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Tretinoína/metabolismo
18.
Am J Hum Genet ; 92(2): 265-70, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23312594

RESUMO

Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans.


Assuntos
Aldeído Desidrogenase/genética , Anoftalmia/enzimologia , Anoftalmia/genética , Genes Recessivos/genética , Microftalmia/enzimologia , Microftalmia/genética , Mutação/genética , Aldeído Oxirredutases , Segregação de Cromossomos/genética , Éxons/genética , Feminino , Ligação Genética , Células HEK293 , Homozigoto , Humanos , Íntrons/genética , Masculino , Proteínas Mutantes/metabolismo , Linhagem , Análise de Sequência de DNA
19.
Am J Med Genet A ; 170(7): 1895-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27103084

RESUMO

Anophthalmia and microphthalmia are the most severe malformations of the eye, referring to a congenital absence, and a reduced size of the eyeball respectively. More than 20 genes have been shown to be mutated in patients with syndromic and non-syndromic forms of anophthalmia-microphthalmia. In a recent study combining autozygome and exome analysis, a homozygous loss of function mutation in TENM3 (previously named ODZ3) was reported in two siblings with isolated bilateral colobomatous microphthalmia from a consanguineous Saudi family. Herein, we report a third patient (not related to the previously reported family) with bilateral colobomatous microphthalmia and developmental delay in whom genetic studies identified a homozygous TENM3 splicing mutation c.2968-2A>T (p.Val990Cysfs*13). This report supports the association of TENM3 mutations with colobomatous microphthalmia and expands the phenotypic spectrum associated with mutations in this gene. © 2016 Wiley Periodicals, Inc.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Coloboma/genética , Opacidade da Córnea/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Microcefalia/genética , Microftalmia/genética , Proteínas do Tecido Nervoso/genética , Processamento Alternativo/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Criança , Coloboma/fisiopatologia , Opacidade da Córnea/fisiopatologia , Deficiências do Desenvolvimento/fisiopatologia , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Microftalmia/fisiopatologia , Mutação
20.
J Neurosci ; 33(46): 18242-6, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227733

RESUMO

Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.


Assuntos
Estimulação Acústica/métodos , Anoftalmia/fisiopatologia , Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Córtex Visual/fisiologia , Adulto , Fatores Etários , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA