Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Hum Mol Genet ; 32(8): 1313-1323, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36434790

RESUMO

The mitochondrial DNA mutation m.9032T>C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032T>C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032T>C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032T>C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.


Assuntos
Prótons , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Trifosfato de Adenosina/metabolismo , Mutação , DNA Mitocondrial/genética
2.
Hum Mol Genet ; 30(5): 381-392, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33600551

RESUMO

The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.


Assuntos
Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Complexos de ATP Sintetase/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA Mitocondrial , Genes Mitocondriais , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Subunidades Proteicas/metabolismo , Prótons
3.
Mol Cell ; 56(6): 763-76, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25453761

RESUMO

In eukaryotic cells, oxidative phosphorylation involves multisubunit complexes of mixed genetic origin. Assembling these complexes requires an organelle-independent synchronizing system for the proper expression of nuclear and mitochondrial genes. Here we show that proper expression of the F1FO ATP synthase (complex V) depends on a cytosolic complex (AME) made of two aminoacyl-tRNA synthetases (cERS and cMRS) attached to an anchor protein, Arc1p. When yeast cells adapt to respiration the Snf1/4 glucose-sensing pathway inhibits ARC1 expression triggering simultaneous release of cERS and cMRS. Free cMRS and cERS relocate to the nucleus and mitochondria, respectively, to synchronize nuclear transcription and mitochondrial translation of ATP synthase genes. Strains releasing asynchronously the two aminoacyl-tRNA synthetases display aberrant expression of nuclear and mitochondrial genes encoding subunits of complex V resulting in severe defects of the oxidative phosphorylation mechanism. This work shows that the AME complex coordinates expression of enzymes that require intergenomic control.


Assuntos
ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Complexos Multienzimáticos , Multimerização Proteica , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Ligação a RNA/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
Hum Mol Genet ; 28(22): 3792-3804, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31276579

RESUMO

The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.


Assuntos
Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Retinose Pigmentar/metabolismo , Trifosfato de Adenosina/metabolismo , Ataxia/genética , Deficiência de Citocromo-c Oxidase/genética , DNA Mitocondrial/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Transporte de Íons , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Retinose Pigmentar/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668157

RESUMO

Ion homeostasis is crucial for organism functioning, and its alterations may cause diseases. For example, copper insufficiency and overload are associated with Menkes and Wilson's diseases, respectively, and iron imbalance is observed in Parkinson's and Alzheimer's diseases. To better understand human diseases, Saccharomyces cerevisiae yeast are used as a model organism. In our studies, we used the vps13Δ yeast strain as a model of rare neurological diseases caused by mutations in VPS13A-D genes. In this work, we show that overexpression of genes encoding copper transporters, CTR1, CTR3, and CCC2, or the addition of copper salt to the medium, improved functioning of the vps13Δ mutant. We show that their mechanism of action, at least partially, depends on increasing iron content in the cells by the copper-dependent iron uptake system. Finally, we present that treatment with copper ionophores, disulfiram, elesclomol, and sodium pyrithione, also resulted in alleviation of the defects observed in vps13Δ cells. Our study points at copper and iron homeostasis as a potential therapeutic target for further investigation in higher eukaryotic models of VPS13-related diseases.


Assuntos
Proteínas de Transporte de Cobre/metabolismo , Cobre/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Transporte de Cobre/genética , Humanos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708436

RESUMO

Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient's cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Potencial da Membrana Mitocondrial/genética , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Químicos , Mutação , Fosforilação Oxidativa , Proteínas de Saccharomyces cerevisiae/química
7.
Am J Hum Genet ; 99(3): 666-673, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523598

RESUMO

Sudden unexpected death in infancy occurs in apparently healthy infants and remains largely unexplained despite thorough investigation. The vast majority of cases are sporadic. Here we report seven individuals from three families affected by sudden and unexpected cardiac arrest between 4 and 20 months of age. Whole-exome sequencing revealed compound heterozygous missense mutations in PPA2 in affected infants of each family. PPA2 encodes the mitochondrial pyrophosphatase, which hydrolyzes inorganic pyrophosphate into two phosphates. This is an essential activity for many biosynthetic reactions and for energy metabolism of the cell. We show that deletion of the orthologous gene in yeast (ppa2Δ) compromises cell viability due to the loss of mitochondria. Expression of wild-type human PPA2, but not PPA2 containing the mutations identified in affected individuals, preserves mitochondrial function in ppa2Δ yeast. Using a regulatable (doxycycline-repressible) gene expression system, we found that the pathogenic PPA2 mutations rapidly inactivate the mitochondrial energy transducing system and prevent the maintenance of a sufficient electrical potential across the inner membrane, which explains the subsequent disappearance of mitochondria from the mutant yeast cells. Altogether these data demonstrate that PPA2 is an essential gene in yeast and that biallelic mutations in PPA2 cause a mitochondrial disease leading to sudden cardiac arrest in infants.


Assuntos
Alelos , Morte Súbita Cardíaca/etiologia , Pirofosfatase Inorgânica/genética , Proteínas Mitocondriais/genética , Mutação/genética , Morte Súbita Cardíaca/patologia , Difosfatos , Exoma/genética , Feminino , Deleção de Genes , Genes Essenciais/genética , Teste de Complementação Genética , Heterozigoto , Humanos , Lactente , Pirofosfatase Inorgânica/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Viabilidade Microbiana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Bombas de Próton/deficiência , Bombas de Próton/genética , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Genet ; 12(7): e1006161, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27442014

RESUMO

Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.


Assuntos
Metabolismo Energético , Proteínas Fúngicas/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Podospora/genética , Aerobiose , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oligomicinas/farmacologia , Podospora/enzimologia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1859(8): 602-611, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778688

RESUMO

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Mitocôndrias/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Conformação Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência
10.
Cell Physiol Biochem ; 50(5): 1840-1855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30423558

RESUMO

BACKGROUND/AIMS: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. METHODS: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. RESULTS: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. CONCLUSION: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


Assuntos
Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Microscopia Crioeletrônica , Dimerização , Potencial da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
PLoS Genet ; 8(8): e1002876, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916027

RESUMO

Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.


Assuntos
Núcleo Celular/genética , Proteínas Fúngicas/genética , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Podospora/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Núcleo Celular/enzimologia , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Mitocondriais , Genoma Mitocondrial , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Podospora/enzimologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transgenes
12.
Proc Natl Acad Sci U S A ; 108(29): 11989-94, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21715656

RESUMO

Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.


Assuntos
Clorexidina/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Miopatias Mitocondriais/tratamento farmacológico , ATPases Mitocondriais Próton-Translocadoras/genética , Ácido Oleico/farmacologia , Retinose Pigmentar/tratamento farmacológico , Linhagem Celular , Clorexidina/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Mutação/genética , Ácido Oleico/uso terapêutico , Saccharomycetales
13.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083953

RESUMO

The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.


Assuntos
Saccharomyces cerevisiae , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Virulência
14.
Semin Cell Dev Biol ; 21(6): 558-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20025987

RESUMO

Mitochondria are the site where oxidative phosphorylations (OXPHOSs) take place. Fusion and fission reactions allow them to change their overall morphology, which ranges from networks of elongated and branched filaments to collections of small individual organelles. It is assumed that mitochondrial bioenergetics and dynamics are linked and that mitochondrial morphology reflects their functional status. This review shows that the links between mitochondrial dynamics and bioenergetics are complex and that mitochondrial deficiencies are not systematically associated to fragmentation. In mammals, mitochondrial fragmentation is observed upon inhibition of OXPHOS with drugs, but not in most cellular models with OXPHOS deficits of genetic origin. In yeast, mitochondrial biogenesis and filament interconnectivity augment with increasing respiratory capacity, but mutation or inhibition of the respiratory chain does not provoke major morphological changes. Significant structural and morphological alterations appear restricted to mutation of genes involved in assembly or function of the F(1)F(0)-ATP-synthase. Finally, ex vivo studies (in mammals) and in vitro studies (in yeast) confirm the essential role of the inner membrane potential for mitochondrial fusion.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Animais , Humanos , Fusão de Membrana , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa
15.
J Biol Chem ; 286(20): 18181-9, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454598

RESUMO

In yeast, the two main F(O) proton-translocating subunits of the ATP synthase (subunits 6/a and 9/c) are encoded by mitochondrial DNA (mtDNA). Unfortunately, mutations that inactivate the F(O) typically result in loss of mtDNA under the form of ρ(-)/ρ(0) cells. Thus, we have designed a novel genetic strategy to circumvent this problem. It exploits previous findings that a null mutation in the nuclear ATP16 gene encoding ATP synthase subunit δ results in massive and lethal F(O)-mediated protons leaks across the inner mitochondrial membrane. Mutations that inactivate the F(O) can thus, in these conditions, be selected positively as cell viability rescuing events. A first set of seven mutants was analyzed and all showed, as expected, very severe F(O) deficiencies. Two mutants carried nuclear mutations in known genes (AEP1, AEP2) required for subunit c expression. The five other mutations were located in mtDNA. Of these, three affect synthesis or stability of subunit a transcripts and the two last consisted in a single amino acid replacement in subunit c. One of the subunit c mutations is particularly interesting. It consists in an alanine to valine change at position 60 of subunit c adjacent to the essential glutamate of subunit c (at position 59) that interacts with the essential arginine 186 of subunit a. The properties of this mutant suggest that the contact zone between subunit a and the ten subunits c-ring structure only involves critical transient interactions confined to the region where protons are exchanged between the subunit a and the c-ring.


Assuntos
Mutação , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Mol Biol Evol ; 28(7): 2063-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21273631

RESUMO

An F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions. The phylogenetic distribution of nuclear and mitochondrial Atp9 genes suggests that their evolution has included two independent transfers to the nucleus followed by several independent episodes of the loss of the mitochondrial and/or nuclear gene. Interestingly, we found that in Podospora anserina, subunit c is exclusively produced from two nuclear genes (PaAtp9-5 and PaAtp9-7), which display different expression profiles through the life cycle of the fungus. The PaAtp9-5 gene is specifically and strongly expressed in germinating ascospores, whereas PaAtp9-7 is mostly transcribed during sexual reproduction. Consistent with these observations, deletion of PaAtp9-5 is lethal, whereas PaAtp9-7 deletion strongly impairs ascospore production. The P. anserina PaAtp9-5 and PaAtp9-7 genes are therefore nonredundant. By swapping the 5' and 3' flanking regions between genes we demonstrated, however, that the PaAtp9 coding sequences are functionally interchangeable. These findings show that after transfer to the nucleus, the subunit c gene in Podospora became a key target for the modulation of cellular energy metabolism according to the requirements of the life cycle.


Assuntos
Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , ATPases Mitocondriais Próton-Translocadoras/genética , Podospora/genética , Sequência de Bases , Núcleo Celular , Proteínas Fúngicas/metabolismo , Deleção de Genes , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Micélio/genética , Micélio/crescimento & desenvolvimento , Fenótipo , Filogenia , Podospora/enzimologia , Podospora/crescimento & desenvolvimento , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
17.
Methods Mol Biol ; 2497: 255-267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771447

RESUMO

Proving with certainty that a GFP-tagged protein is imported inside mitochondria by visualizing its fluorescence emission with an epifluorescence microscope is currently impossible using regular GFP-tagging. This is particularly true for proteins dual localized in the cytosol and mitochondria, which have been estimated to represent up to one third of the established mitoproteomes. These proteins are usually composed of a surpassingly abundant pool of the cytosolic isoform compared to the mitochondrial isoform. As a consequence, when tagged with a regular GFP, the fluorescence emission of the cytosolic isoform will inevitably eclipse that of the mitochondrial one and prevent the detection of the mitochondrial echoform. To overcome this technical limit, we engineered a yeast strain expressing a new type of GFP called Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). In this strain, one moiety of the GFP is encoded by the mitochondrial DNA while the second moiety of the GFP can be tagged to any nuclear-encoded protein (suspected to be dual localized or bona fide mitochondrial). By doing so, only mitochondrial proteins or echoforms of dual localized proteins, regardless of their organismal origin, trigger GFP reconstitution that can be visualized by regular fluorescence microscopy. The strength of the BiG Mito-Split-GFP system is that proof of the mitochondrial localization of a given protein rests on a simple and effortless microscopy observation.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mitocôndrias/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Methods Mol Biol ; 2497: 221-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771445

RESUMO

Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genes Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Virulência
19.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100419

RESUMO

The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
J Biol Chem ; 285(6): 4099-4109, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19933271

RESUMO

Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F(1)) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120-124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Deltaatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Deltaatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Deltaatp12 but not in the background of Deltaatp12Deltafmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.


Assuntos
Chaperoninas/genética , Chaperonas Moleculares/genética , Mutação , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , Western Blotting , Células Cultivadas , Chaperoninas/química , Chaperoninas/metabolismo , Transporte de Elétrons/genética , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Teste de Complementação Genética , Humanos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade , Eletricidade Estática , Triptofano/genética , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA