Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Allergy Clin Immunol ; 149(1): 156-167.e7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051221

RESUMO

BACKGROUND: Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE: Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS: FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS: Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS: Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.


Assuntos
Anafilaxia/imunologia , Mastócitos/imunologia , Receptores de IgE/imunologia , Sirtuínas/imunologia , Animais , Células da Medula Óssea/citologia , Sangue Fetal/citologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuínas/genética
2.
FASEB J ; 34(9): 12565-12576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717131

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger whose formation has remained elusive. In vitro, CD38-mediated NAADP synthesis requires an acidic pH and a nonphysiological concentration of nicotinic acid (NA). We discovered that CD38 catalyzes synthesis of NAADP by exchanging the nicotinamide moiety of nicotinamide adenine dinucleotide phosphate (NADP+ ) for the NA group of nicotinic acid adenine dinucleotide (NAAD) inside endolysosomes of interleukin 8 (IL8)-treated lymphokine-activated killer (LAK) cells. Upon IL8 stimulation, cytosolic NADP+ is transported to acidified endolysosomes via connexin 43 (Cx43) and gated by cAMP-EPAC-RAP1-PP2A signaling. CD38 then performs a base-exchange reaction with the donor NA group deriving from NAAD, produced by newly described endolysosomal activities of NA phosphoribosyltransferase (NAPRT) and NMN adenyltransferase (NMNAT) 3. Thus, the membrane organization of endolysosomal CD38, a signal-mediated transport system for NADP+ and luminal NAD+ biosynthetic enzymes integrate signals from a chemokine and cAMP to specify the spatiotemporal mobilization of Ca2+ to drive cell migration.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sinalização do Cálcio , Movimento Celular , Interleucina-8/farmacologia , Células Matadoras Ativadas por Linfocina/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADP/análogos & derivados , Animais , Células Cultivadas , Células Matadoras Ativadas por Linfocina/citologia , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo
3.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321911

RESUMO

Ursolic acid (UA) possesses various pharmacological activities, such as antitumorigenic and anti-inflammatory effects. In the present study, we investigated the mechanisms underlying the effects of UA against esophageal squamous cell carcinoma (ESCC) (TE-8 cells and TE-12 cells). The cell viability assay showed that UA decreased the viability of ESCC in a dose-dependent manner. In the soft agar colony formation assay, the colony numbers and size were reduced in a dose-dependent manner after UA treatment. UA caused the accumulation of vacuoles and LC3 puncta, a marker of autophagosome, in a dose-dependent manner. Autophagy induction was confirmed by measuring the expression levels of LC3 and p62 protein in ESCC cells. UA increased LC3-II protein levels and decreased p62 levels in ESCC cells. When autophagy was hampered using 3-methyladenine (3-MA), the effect of UA on cell viability was reversed. UA also significantly inhibited protein kinase B (Akt) activation and increased p-Akt expression in a dose-dependent manner in ESCC cells. Accumulated LC3 puncta by UA was reversed after wortmannin treatment. LC3-II protein levels were also decreased after treatment with Akt inhibitor and wortmannin. Moreover, UA treatment increased cellular reactive oxygen species (ROS) levels in ESCC in a time- and dose-dependent manner. Diphenyleneiodonium (an ROS production inhibitor) blocked the ROS and UA induced accumulation of LC3-II levels in ESCC cells, suggesting that UA-induced cell death and autophagy are mediated by ROS. Therefore, our data indicate that UA inhibits the growth of ESCC cells by inducing ROS-dependent autophagy.


Assuntos
Antineoplásicos/toxicidade , Autofagia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/toxicidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ácido Ursólico
4.
FASEB J ; 31(7): 3126-3137, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386045

RESUMO

LPS has been shown to induce hepatocyte autophagy, but little is known about how LPS is able to do this during acute toxic liver injury. Our aim was to determine the existence of any selective Ca2+ signaling coupling to hepatocyte autophagy in response to LPS. LPS increased the autophagic process in hepatocytes, and CD38 knockdown prevented this response. Ned19, a specific inhibitor for nicotinic acid adenine dinucleotide phosphate (NAADP), prevented LPS-mediated Ca2+ signaling and autophagosome formation in hepatocytes. CD38 overexpression protected the liver from LPS/d-galactosamine (GalN)-induced injury, and NAADP administration promoted autophagosome formation and protected hepatocytes from injury induced by LPS/GalN. Autophagy was promoted by the up-regulation of autophagy-related gene expression via NAADP-mediated Ca2+ signaling in response to LPS. However, CD38-knockout mice displayed down-regulation in hepatocyte gene expression. Ned19 also inhibited the NAADP-stimulated induction of gene expression by inhibiting the LPS-induced nuclear translocation of transcription factor EB (TFEB). Hepatocyte autophagy protects against LPS-induced liver injury via the CD38/NAADP/Ca2+/TFEB pathway. The role of NAADP-mediated Ca2+ signaling in the autophagic process will help elucidate the complexities of autophagy regulation, which is essential toward the discovery of new therapeutic tools against acute liver injury.-Rah, S.-Y., Lee, Y.-H., Kim, U.-H. NAADP-mediated Ca2+ signaling promotes autophagy and protects against LPS-induced liver injury.


Assuntos
Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/toxicidade , NADP/análogos & derivados , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Cálcio/metabolismo , Carbolinas/farmacologia , Morte Celular , Hepatócitos/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADP/genética , NADP/metabolismo , Piperazinas/farmacologia
5.
Proc Natl Acad Sci U S A ; 112(5): 1559-64, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25591581

RESUMO

A successful pregnancy depends on a complex process that establishes fetomaternal tolerance. Seminal plasma is known to induce maternal immune tolerance to paternal alloantigens, but the seminal factors that regulate maternal immunity have yet to be characterized. Here, we show that a soluble form of CD38 (sCD38) released from seminal vesicles to the seminal plasma plays a crucial role in inducing tolerogenic dendritic cells and CD4(+) forkhead box P3(+) (Foxp3(+)) regulatory T cells (Tregs), thereby enhancing maternal immune tolerance and protecting the semiallogeneic fetus from resorption. The abortion rate in BALB/c females mated with C57BL/6 Cd38(-/-) males was high compared with that in females mated with Cd38(+/+) males, and this was associated with a reduced proportion of Tregs within the CD4(+) T-cell pool. Direct intravaginal injection of sCD38 to CBA/J pregnant mice at preimplantation increased Tregs and pregnancy rates in mice under abortive sonic stress from 48 h after mating until euthanasia. Thus, sCD38 released from seminal vesicles to the seminal plasma acts as an immunoregulatory factor to protect semiallogeneic fetuses from maternal immune responses.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Tolerância Imunológica , Troca Materno-Fetal , Sêmen/imunologia , ADP-Ribosil Ciclase 1/genética , Animais , Células Dendríticas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
6.
Immunopharmacol Immunotoxicol ; 40(1): 52-58, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29172841

RESUMO

OBJECTIVES: Artemisia scoparia Waldst. et Kit. (AS) has been used to treat inflammation, urticaria and hepatitis. However, the scientific studies of AS and its active compound for inflammatory reactions in activated human mast cell line, HMC-1 cells have not yet been elucidated. MATERIALS AND METHODS: Here, we isolated 3,5-dicaffeoyl-epi-quinic acid (DEQA) from AS butanol fraction. The anti-inflammatory effect of AS and its new active compound, DEQA was examined in HMC-1 cells by studying the following markers: phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-induced thymic stromal lymphopoietin (TSLP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 secretion and mRNA expression by ELISA and RT-PCR, respectively. Furthermore, mechanism related to anti-inflammatory was examined by Western blotting. RESULTS: We reported that AS and its new active compound, DEQA significantly reduced TSLP, TNF-α, IL-1ß and IL-6 production levels through the reduction of caspase-1 activity. The mRNA expression of these inflammatory cytokine was also reduced via blocking nuclear factor-κB nuclear translocation by AS and DEQA. In addition, AS significantly reduced phosphorylated-c-Jun N-terminal kinase level and DEQA significantly reduced both phosphorylated-c-Jun N-terminal kinase and -p38 mitogen-activated protein kinase levels. CONCLUSIONS: Therefore, these results indicated that AS and its active compound, DEQA may improve mast cell-mediated inflammatory diseases.


Assuntos
Artemisia/química , Mastócitos/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Linhagem Celular , Citocinas/metabolismo , Humanos , Mastócitos/citologia , NF-kappa B/metabolismo , Ácido Quínico/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Pharm Biol ; 55(1): 1856-1862, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28614972

RESUMO

OBJECTIVE: To study the anti-inflammatory properties of OJ. CONTEXT: Ojayeonjonghwan (OJ) is a traditional Korean prescription, which has been widely used for the treatment of prostatitis. However, no scientific study has been performed of the anti-inflammatory effects of OJ. MATERIALS AND METHODS: Peritoneal macrophages were isolated 3-4 days after injecting a C57BL/6J mouse with thioglycollate. They were then treated with OJ water extract (0.01, 0.1, and 1 mg/mL) for 1 h and stimulated with lipopolysaccharide (LPS) for different times. Nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and proinflammatory cytokine levels were determined by NO assay, Western blotting, RT-PCR and ELISA. RESULTS: NO generation and iNOS induction were increased in the LPS-activated mouse peritoneal macrophages. However, NO generation and iNOS induction by LPS were suppressed by treatment with OJ for the first time. The IC50 value of OJ with respect to NO production was 0.09 mg/mL. OJ did not influence LPS-stimulated COX-2 induction, but did significantly decrease LPS-stimulated secretions and mRNA expressions of tumour necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Inhibition rates of TNF-α, IL-6, and IL-1ß at an OJ concentration of 1 mg/mL were 77%, 88%, and 50%, respectively. OJ also suppressed the LPS-induced nuclear translocation of NF-κB. High-performance liquid chromatography showed schizandrin and gomisin A are major components of OJ. CONCLUSIONS: OJ reduces inflammatory response, and this probably explains its positive impact on the prostatitis associated inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lignanas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos Policíclicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Ciclo-Octanos/análise , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dioxóis/análise , Etnofarmacologia , Lignanas/análise , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Medicina Tradicional Coreana , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Compostos Policíclicos/análise , Prostatite/tratamento farmacológico , Prostatite/imunologia , Prostatite/metabolismo , Prostatite/patologia , Tioglicolatos
8.
Exp Mol Med ; 55(7): 1492-1505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394593

RESUMO

Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.


Assuntos
Diabetes Mellitus , Canais de Cátion TRPM , Humanos , Gluconeogênese/fisiologia , Glucagon , Adenosina Difosfato Ribose/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Jejum , Diabetes Mellitus/metabolismo
9.
Metabolism ; 141: 155516, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773805

RESUMO

OBJECTIVE: Emerging evidence suggests that crosstalk between Kupffer cells (KCs) and hepatocytes protects against non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms that lead to the reduction of steatosis in NAFLD remain obscure. METHODS: Ttp+/+ and Ttp-/- mice were fed with a high-fat diet. Hepatic steatosis was analyzed by Nile Red staining and measurement of inflammatory cytokines. Lipid accumulation and cell death were evaluated in co-culture systems with primary hepatocytes and KCs derived from either Ttp+/+ or Ttp-/- mice. RESULTS: Tristetraprolin (TTP), an mRNA binding protein, was essential for the protective effects of metformin in NAFLD. Metformin activated TTP via the AMPK-Sirt1 pathway in hepatocytes and KCs. TTP inhibited TNF-α production in KCs, which in turn decreased hepatocyte necroptosis. Downregulation of Rheb expression by TTP promoted hepatocyte lipophagy via mTORC1 inhibition and increased nuclear translocation of transcription factor-EB (TFEB). Consistently, TTP-deficient NAFLD mice failed to respond to metformin with respect to alleviation of hepatic steatosis, protection of hepatocyte necroptosis, or induction of lipophagy. CONCLUSIONS: TTP, which is essential for the protective effects of metformin, may represent a novel primary therapeutic target in NAFLD.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Células de Kupffer , Metformina/farmacologia , Necroptose , Hepatócitos/metabolismo , Comunicação , Autofagia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
10.
J Biol Chem ; 286(52): 44480-90, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22033928

RESUMO

The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD(+). cADPR increases intracellular Ca(2+) through the intracellular ryanodine receptor/Ca(2+) release channel (RyR). It has been known that intracellular NAD(+) approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD(+). Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD(+) export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD(+)/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD(+) and importing cADPR into the cell to activate intracellular calcium mobilization.


Assuntos
Cálcio/metabolismo , Conexina 43/metabolismo , ADP-Ribose Cíclica/metabolismo , NAD/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Conexina 43/genética , ADP-Ribose Cíclica/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , NAD/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
Theranostics ; 12(7): 3316-3328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547746

RESUMO

Nicotinamide adenine dinucleotide (NAD+) acts as a cofactor for multiple biological processes. While previous research has revealed that the NAD+ declines associated with aging contributes to an impairment of immune cells, its role in mast cell function, especially in response to an anaphylactic condition, has remained unexplored. We tested whether the restoration of cellular NAD+ concentration by the supplementation of NAD+ boosting molecules prevented mast cell degranulation and anaphylactic responses. Methods: Bone marrow derived mast cells (BMMCs) and human cord blood derived mast cells were treated with NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), and FcεRI downstream signaling was assessed. Animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA) were used to investigate the effects of NAD+ precursors in the anaphylactic responses of mice. Results: Treatment of murine BMMCs and human cord blood derived mast cells with NAD+ precursors repressed intracellular signaling downstream of FcεRI, as well as the release of inflammatory cytokines and lipid mediators. The intraperitoneal administration of NMN or NR also markedly attenuated IgE-mediated anaphylactic responses in mouse models of PSA and PCA. These beneficial effects of NAD+ precursors, however, were attenuated in mast cell-specific Sirt6 knockout mice, indicating a Sirt6 dependency for their action. Conclusion: NAD+ precursors may serve as an effective therapeutic strategy that limits mast cell-mediated anaphylactic responses.


Assuntos
Anafilaxia , Sirtuínas , Anafilaxia/tratamento farmacológico , Animais , Degranulação Celular , Humanos , Masculino , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD , Antígeno Prostático Específico , Sirtuínas/farmacologia
12.
Aging (Albany NY) ; 14(3): 1233-1252, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166693

RESUMO

The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.


Assuntos
Amiloide , Endorribonucleases , Imidazóis , Neuroblastoma , Piridinas , eIF-2 Quinase , Amiloide/biossíntese , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Humanos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
13.
J Biol Chem ; 285(28): 21877-87, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20442403

RESUMO

We have previously demonstrated that cyclic ADP-ribose (cADPR) is a calcium signaling messenger in interleukin 8 (IL-8)-induced lymphokine-activated killer (LAK) cells. In this study we examined the possibility that IL-8 activates CD38 to produce another messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), in LAK cells, and we showed that IL-8 induced NAADP formation after cADPR production. These calcium signaling messengers were not produced when LAK cells prepared from CD38 knock-out mice were treated with IL-8, indicating that the synthesis of both NAADP and cADPR is catalyzed by CD38 in LAK cells. Application of cADPR to LAK cells induced NAADP production, whereas NAADP failed to increase intracellular cADPR levels, confirming that the production of cADPR precedes that of NAADP in IL-8-treated LAK cells. Moreover, NAADP increased intracellular Ca(2+) signaling as well as cell migration, which was completely blocked by bafilomycin A1, suggesting that NAADP is generated in lysosome-related organelles after cADPR production. IL-8 or exogenous cADPR, but not NAADP, increased intracellular cAMP levels. cGMP analog, 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate, increased both cADPR and NAADP production, whereas the cAMP analog, 8-(4-chlorophenylthio)-cAMP, increased only NAADP production, suggesting that cAMP is essential for IL-8-induced NAADP formation. Furthermore, activation of Rap1, a downstream molecule of Epac, was required for IL-8-induced NAADP formation in LAK cells. Taken together, our data suggest that IL-8-induced NAADP production is mediated by CD38 activation through the actions of cAMP/Epac/protein kinase A/Rap1 in LAK cells and that NAADP plays a key role in Ca(2+) signaling of IL-8-induced LAK cell migration.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sinalização do Cálcio , ADP-Ribose Cíclica/metabolismo , Interleucina-8/metabolismo , Células Matadoras Ativadas por Linfocina/citologia , NADP/análogos & derivados , Animais , Cálcio/metabolismo , Movimento Celular , Humanos , Camundongos , Camundongos Transgênicos , NADP/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo
14.
Cell Rep ; 30(4): 1063-1076.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995750

RESUMO

The resolution phase of acute inflammation is essential for tissue homeostasis, yet the underlying mechanisms remain unclear. We demonstrate that resolution of inflammation involves interactions between CD38 and tristetraprolin (TTP). During the onset of acute inflammation, CD38 levels are increased, leading to the production of Ca2+-signaling messengers, nicotinic acid adenine dinucleotide phosphate (NAADP), ADP ribose (ADPR), and cyclic ADPR (cADPR) from NAD(P)+. To initiate the onset of resolution, TTP expression is increased by the second messengers, NAADP and cADPR, which downregulate CD38 expression. The activation of TTP by Sirt1-dependent deacetylation, in response to increased NAD+ levels, suppresses the acute inflammatory response and decreases Rheb expression, inhibits mTORC1, and induces autophagolysosomes for bacterial clearance. TTP may represent a mechanistic target of anti-inflammatory agents, such as carbon monoxide. TTP mediates crosstalk between acute inflammation and autophagic clearance of bacteria from damaged tissue in the resolution of inflammation during sepsis.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Inflamação/metabolismo , Glicoproteínas de Membrana/imunologia , Sepse/metabolismo , Tristetraprolina/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/imunologia , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Cálcio/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , NADP/metabolismo , RNA Interferente Pequeno , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Sepse/enzimologia , Sepse/imunologia , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tristetraprolina/genética
15.
Microb Pathog ; 47(1): 47-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447166

RESUMO

Endothelial hyperpermeability, a hallmark of septicemia, is induced by stress fiber formation, which is primarily regulated by the calcium/calmodulin signaling pathway in endothelial cells. We previously reported that trifluoperazine, a calcium/calmodulin antagonist, blocks Vibrio vulnificus cytolysin (VVC) -induced lethality at in vivo animal model. The object of this study was therefore to examine whether VVC induces stress fiber formation through calcium/calmodulin signaling in endothelial cells. Here, we monitored calcium-influx after treatment of VVC using confocal microscopy in CPAE cells, pulmonary endothelial cell line. Interestingly, we found that VVC-induced dose-dependently increases of [Ca(2+)](i) in CPAE cells. Moreover, VVC-induced stress fiber formation as well as phosphorylation of myosin light chain (MLC) in a dose- and time-dependent manner, which was completely blocked by trifluoperazine. These results suggest that the calcium/calmodulin signaling pathway plays a pivotal role in VVC-induced hyperpermeability.


Assuntos
Toxinas Bacterianas/toxicidade , Cálcio/metabolismo , Calmodulina/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Perforina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Vibrio vulnificus/fisiologia , Animais , Bovinos , Linhagem Celular , Células Endoteliais/microbiologia , Cadeias Leves de Miosina/metabolismo , Fosforilação , Fibras de Estresse/metabolismo
16.
Biochem Biophys Res Commun ; 367(1): 156-61, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18166151

RESUMO

NAD is available in the extracellular environment and elicits immune modulation such as T cell apoptosis by being used as the substrate of cell surface ADP-ribosyl transferase. However, it is unclear whether extracellular NAD affects function of macrophages expressing cell surface ADP-ribosyl transferase. Here we show that extracellular NAD enhances Fcgamma receptor (FcgammaR)-mediated phagocytosis in J774A.1 macrophages via the conversion into cyclic ADP-ribose (cADPR), a potent calcium mobilizer, by CD38, an ADP-ribosyl cyclase. Extracellular NAD increased the phagocytosis of IgG-coated sheep red blood cells (IgG-SRBC) in J774A.1 macrophages, which was completely abolished by pretreatment of 8-bromo-cADPR, an antagonist of cADPR, or CD38 knockdown. Extracellular NAD increased basal intracellular Ca(2+) concentration, which also was abolished by pretreatment of 8-bromo-cADPR or CD38 knockdown. Moreover, the chelation of intracellular calcium abolished NAD-induced enhancement of phagocytosis of IgG-SRBC. Our results suggest that extracellular NAD act as a regulator for FcgammaR-mediated phagocytosis in macrophages.


Assuntos
Cálcio/metabolismo , Espaço Extracelular/metabolismo , Macrófagos/fisiologia , NAD/metabolismo , Fagocitose/fisiologia , Receptores de IgG/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Animais , Transporte Biológico , Células Cultivadas , ADP-Ribose Cíclica/metabolismo , Imunoglobulina G/sangue , Macrófagos/patologia , Camundongos
17.
Cell Death Dis ; 9(11): 1060, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333475

RESUMO

Carbon monoxide (CO) can confer protection against cellular stress, whereas the potential involvement of autophagy and lysosomal biogenesis remains incompletely understood. We demonstrate here that the activation of protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) with CO increased the nuclear translocation of transcription factor EB (TFEB). PERK activation by CO increased intracellular Ca2+ concentration and the phosphatase activity of calcineurin against TFEB. Moreover, we found that in the deficiency of TFEB, CO not only failed to recruit Parkin to the mitochondria but also failed to increase expression of lysosomal genes such as Lamp1, CathB, and TPP1. Therefore, we suggest that CO increases mitophagy through TFEB nuclear translocation by PERK-calcinuerin activation. In addition, the inhibition of TFEB with siRNA against TFEB abrogated the increase of mtDNA with CO, markers of mitochondrial biogenesis such as PGC1α, NRF1, and TFAM, and the mitochondrial proteins COX II, COX IV, and cytochrome c. To investigate the effects of CO on mitochondrial homeostasis in vivo, mice were treated with lipopolysaccharide (LPS)/D-galactosamine (D-GalN). CO inhalation reduced liver injury after challenge with LPS/GalN. Furthermore, CO inhalation increased TFEB activation, mitophagy and mitochondrial biogenesis in mice treated with LPS/GalN. Our findings describe novel mechanisms underlying CO-dependent cytoprotection in hepatocytes and liver tissue via activation of TFEB-dependent mitophagy and associated induction of both lysosomal and mitochondrial biogenesis.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antimetabólitos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Monóxido de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galactosamina/administração & dosagem , Galactosamina/antagonistas & inibidores , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Biogênese de Organelas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tripeptidil-Peptidase 1 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
18.
Exp Mol Med ; 38(5): 535-45, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17079870

RESUMO

Doxorubicin (DOX) is one of the most potent anticancer drugs and induces acute cardiac arrhythmias and chronic cumulative cardiomyopathy. Though DOX-induced cardiotoxicity is known to be caused mainly by ROS generation, a disturbance of Ca2+ homeostasis is also implicated one of the cardiotoxic mechanisms. In this study, a molecular basis of DOX-induced modulation of intracellular Ca2+ concentration ([Ca2+]i) was investigated. Treatment of adult rat cardiomyocytes with DOX increased [Ca2+]i irrespectively of extracellular Ca2+, indicating DOX-mediated Ca2+ release from intracellular Ca2+ stores. The DOX-induced Ca2+ increase was slowly processed and sustained. The Ca2+ increase was inhibited by pretreatment with a sarcoplasmic reticulum (SR) Ca2+ channel blocker, ryanodine or dantrolene, and an antioxidant, alpha-lipoic acid or alpha-tocopherol. DOX-induced ROS generation was observed immediately after DOX treatment and increased in a time-dependent manner. The ROS production was significantly reduced by the pretreatment of the SR Ca2+ channel blockers and the antioxidants. Moreover, DOX-mediated activation of caspase-3 was significantly inhibited by the Ca2+ channel blockers and a-lipoic acid but not a-tocopherol. In addition, cotreatment of ryanodine with alpha-lipoic acid resulted in further inhibition of the casapse-3 activity. These results demonstrate that DOX-mediated ROS opens ryanodine receptor, resulting in an increase in [Ca2+]i and that the increased [Ca2+]i induces ROS production. These observations also suggest that DOX/ROS-induced increase of [Ca2+]i plays a critical role in damage of cardiomyocytes.


Assuntos
Cálcio/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/síntese química , Animais , Antibióticos Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Caspase 3/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos
19.
Exp Mol Med ; 38(6): 718-26, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17202848

RESUMO

ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca2+-mobilizing second messenger, cyclic ADP- ribose (cADPR), from beta-NAD+. A prototype of mammalian ADPR-cyclases is a lymphocyte antigen CD38. Accumulating evidence indicates that ADPR-cyclases other than CD38 are expressed in various cells and organs. In this study, we discovered a small molecule inhibitor of kidney ADPR-cyclase. This compound inhibited kidney ADPR-cyclase activity but not CD38, spleen, heart or brain ADPR-cyclase activity in vitro. Characterization of the compound in a cell-based system revealed that an extracellular calcium-sensing receptor (CaSR)- mediated cADPR production and a later long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i) in mouse mesangial cells were inhibited by the pre-treatment with this compound. In contrast, the compound did not block CD3/TCR-induced cADPR production and the increase of [Ca2+]i in Jurkat T cells, which express CD38 exclusively. The long-lasting Ca2+ signal generated by both receptors was inhibited by pre-treatment with an antagonistic cADPR derivative, 8-Br-cADPR, indicating that the Ca2+ signal is mediated by the ADPR-cyclase metabolite, cADPR. Moreover, among structurally similar compounds tested, the compound inhibited most potently the cADPR production and Ca2+ signal induced by CaSR. These findings provide evidence for existence of a distinct ADPR-cyclase in the kidney and basis for the development of tissue specific inhibitors.


Assuntos
ADP-Ribosil Ciclase/antagonistas & inibidores , ADP-Ribosil Ciclase/metabolismo , Compostos Azo/farmacologia , Sinalização do Cálcio , ADP-Ribose Cíclica/metabolismo , Inibidores Enzimáticos/farmacologia , Rim/enzimologia , Animais , Compostos Azo/química , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/metabolismo
20.
Sci Rep ; 6: 26821, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230238

RESUMO

Despite that recombinant human bone morphogenetic protein-2 (rhBMP-2) has been reported as a stimulatory effecter of cancer cell growth because of its characteristic like morphogen, the biological functions of rhBMP-2 in human esophageal cancer cells are unknown. The purpose of this study was to investigate whether rhBMP-2 has an inhibitory effect on the growth of human esophageal squamous carcinoma cells (ESCC). RhBMP-2 significantly inhibited proliferation of ESCC cells in a dose-dependent manner in the MTT assay. Cell cycle arrest at the G1 phase was induced 24 h after rhBMP2 treatment. RhBMP-2 also reduced cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK 6 activities, and stimulated p-Smad1/5/8, p53, and p21 levels at 12 h. In contrast, rhBMP-2 diminished poly (ADP-ribose) polymerase (PARP) protein expression levels and activated cleaved PARP, cleaved caspase-7, and cleaved-caspase 9 levels in ESCC cells. In addition, rhBMP-2 increased MST1, MOB1, and p-YAP protein levels and the RASSF1 binds Mst1 more upon treatment with rhBMP2. The induced p-YAP expression in TE-8 and TE-12 cells by rhBMP-2 was reversed by the RASSF1 knockdown. In vivo study, rhBMP-2 decreased tumor volume following subcutaneous implantation and showed higher radiologic score (less bony destruction) after femoral implantation compared to those in a control group. These results suggest that rhBMP-2 inhibits rather than activates proliferation of human esophageal cancer cells which is mediated through activating the hippo signaling pathway.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína Morfogenética Óssea 2/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/tratamento farmacológico , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA