Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401431

RESUMO

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Animais , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Fator de Transcrição Associado à Microftalmia/efeitos da radiação , Cultura Primária de Células , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
2.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154076

RESUMO

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fase G2/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Fase S/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
Genome Res ; 29(3): 439-448, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718334

RESUMO

The homologous recombination repair (HRR) pathway repairs DNA double-strand breaks in an error-free manner. Mutations in HRR genes can result in increased mutation rate and genomic rearrangements, and are associated with numerous genetic disorders and cancer. Despite intensive research, the HRR pathway is not yet fully mapped. Phylogenetic profiling analysis, which detects functional linkage between genes using coevolution, is a powerful approach to identify factors in many pathways. Nevertheless, phylogenetic profiling has limited predictive power when analyzing pathways with complex evolutionary dynamics such as the HRR. To map novel HRR genes systematically, we developed clade phylogenetic profiling (CladePP). CladePP detects local coevolution across hundreds of genomes and points to the evolutionary scale (e.g., mammals, vertebrates, animals, plants) at which coevolution occurred. We found that multiscale coevolution analysis is significantly more biologically relevant and sensitive to detect gene function. By using CladePP, we identified dozens of unrecognized genes that coevolved with the HRR pathway, either globally across all eukaryotes or locally in different clades. We validated eight genes in functional biological assays to have a role in DNA repair at both the cellular and organismal levels. These genes are expected to play a role in the HRR pathway and might lead to a better understanding of missing heredity in HRR-associated cancers (e.g., heredity breast and ovarian cancer). Our platform presents an innovative approach to predict gene function, identify novel factors related to different diseases and pathways, and characterize gene evolution.


Assuntos
Evolução Molecular , Reparo de DNA por Recombinação , Software , Animais , Enzimas Reparadoras do DNA/genética , Loci Gênicos , Filogenia , Plantas/genética
4.
Neurogenetics ; 22(2): 117-125, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811585

RESUMO

We report a multiplex family with extended multisystem neurological phenotype associated with a CRYAB variant. Two affected siblings were evaluated with whole exome sequencing, muscle biopsy, laser microdissection, and mass spectrometry-based proteomic analysis. Both patients and their mother manifested a combination of early-onset cataracts, cardiomyopathy, cerebellar ataxia, optic atrophy, cognitive impairment, and myopathy. Whole exome sequencing identified a heterozygous c.458C>T variant mapped to the C-terminal extension domain of the Alpha-crystallin B chain, disrupting its function as a molecular chaperone and its ability to suppress protein aggregation. In accordance with the molecular findings, muscle biopsies revealed subsarcolemmal deposits that appeared dark with H&E and trichrome staining were negative for the other routine histochemical staining and for amyloid with the Congo-red stain. Electron microscopy demonstrated that the deposits were composed of numerous parallel fibrils. Laser microdissection and mass spectrometry-based proteomic analysis revealed that the inclusions are almost exclusively composed of crystallized chaperones/heat shock proteins. Moreover,  a structural model suggests that Ser153 could be involved in monomer stabilization, dimer association, and possible binding of partner proteins. We propose that our report potentially expands the complex phenotypic spectrum of alpha B-crystallinopathies with possible effect of a CRYAB variant on the central nervous system.


Assuntos
Cardiomiopatia Hipertrófica/genética , Catarata/genética , Ataxia Cerebelar/genética , Disfunção Cognitiva/genética , Atrofia Óptica/genética , Sarcolema/ultraestrutura , Cadeia B de alfa-Cristalina/genética , Sequência de Aminoácidos , Biópsia , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Corpos de Inclusão/ultraestrutura , Judeus/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Debilidade Muscular/genética , Músculo Esquelético/patologia , Fenótipo , Conformação Proteica , Sequenciamento do Exoma
5.
Curr Neurol Neurosci Rep ; 19(10): 70, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31440850

RESUMO

PURPOSE OF REVIEW: Until recently, the gene associated with the recessive form of familial brain calcification (PFBC, Fahr disease) was unknown. MYORG, a gene that causes recessive PFBC was only recently discovered and is currently the only gene associated with a recessive form of this disease. Here, we review the radiological and clinical findings in adult MYORG mutation homozygous and heterozygous individuals. RECENT FINDINGS: MYORG was shown to be the cause of a large fraction of recessive cases of PFBC in patients of different ethnic populations. Pathogenic mutations include inframe insertions and deletions in addition to nonsense and missense mutations that are distributed throughout the entire MYORG coding region. Homozygotes have extensive brain calcification in all known cases, whereas in some carriers of heterozygous mutation, punctuated calcification of the globus pallidus is demonstrated. The clinical spectrum in homozygotes ranges from the lack of neurological symptoms to severe progressive neurological syndrome with bulbar and cerebellar signs, parkinsonism and other movement disorders, and cognitive impairments. Heterozygotes are clinically asymptomatic. MYORG is a transmembrane protein localized to the endoplasmic reticulum and is mainly expressed in astrocytes. While the biochemical pathways of the protein are still unknown, information from its evolution profile across hundreds of species (phylogenetic profiling) suggests a role for MYORG in regulating ion homeostasis via its glycosidase domain. MYORG mutations are a major cause for recessive PFBC in different world populations. Future studies are required in order to reveal the cellular role of the MYORG protein.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Adulto , Doenças dos Gânglios da Base , Calcinose , Glicosídeo Hidrolases , Heterozigoto , Humanos , Masculino , Mutação , Doenças Neurodegenerativas , Linhagem , Filogenia
6.
NAR Cancer ; 4(2): zcac013, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35399185

RESUMO

DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).

7.
Ann Clin Transl Neurol ; 6(1): 106-113, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30656188

RESUMO

Objective: To investigate the genetic basis of the recessive form of primary familial brain calcification and study pathways linking a novel gene with known dominant genes that cause the disease. Methods: Whole exome sequencing and Sanger-based segregation analysis were used to identify possible disease causing mutations. Mutation pathogenicity was validated by structural protein modeling. Functional associations between the candidate gene, MYORG, and genes previously implicated in the disease were examined through phylogenetic profiling. Results: We studied nine affected individuals from two unrelated families of Middle Eastern origin. The median age of symptom onset was 29.5 years (range 21-57 years) and dysarthria was the most common presenting symptom. We identified in the MYORG gene, a homozygous c.1233delC mutation in one family and c.1060_1062delGAC mutation in another. The first mutation results in protein truncation and the second in deletion of a highly conserved aspartic acid that is likely to disrupt binding of the protein with its substrate. Phylogenetic profiling analysis of the MYORG protein sequence suggests co-evolution with a number of calcium channels as well as other proteins related to regulation of anion transmembrane transport (False Discovery Rate, FDR < 10-8) and with PDCD6IP, a protein interacting with PDGFR ß which is known to be involved in the disease. Interpretation: MYORG mutations are linked to a recessive form of primary familial brain calcification. This association was recently described in patients of Chinese ancestry. We suggest the possibility that MYORG mutations lead to calcification in a PDGFR ß-related pathway.


Assuntos
Encefalopatias Metabólicas/genética , Calcinose/genética , Glicosídeo Hidrolases/genética , Adulto , Povo Asiático/genética , Encefalopatias Metabólicas/complicações , Encefalopatias Metabólicas/patologia , Calcinose/complicações , Feminino , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
8.
Sci Rep ; 8(1): 13005, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158544

RESUMO

Osteoclasts are the bone resorbing cells that derive from myeloid progenitor cells. Although there have been recent advancements in the ability to identify osteoclast progenitors, very little is known about the molecular mechanisms governing their homeostasis. Here, by analyzing the normalized phylogenetic profiles of the Schlafen (Slfn) gene family, we found that it co-evolved with osteoclast-related genes. Following these findings, we used a Slfn2 loss-of-function mutant mouse, elektra, to study the direct role of Slfn2 in osteoclast development and function. Slfn2eka/eka mice exhibited a profound increase in their cancellous bone mass and a significant reduction in osteoclast numbers. In addition, monocyte cultures from the bone marrow of Slfn2eka/eka mice showed a reduction in osteoclast number and total resorption area. Finally, we show that the bone marrow of Slfn2eka/eka mice have significantly less CD11b-Ly6Chi osteoclast precursors. Overall, our data suggest that Slfn2 is required for normal osteoclast differentiation and that loss of its function in mice results in an osteopetrotic phenotype.


Assuntos
Proteínas de Ciclo Celular/deficiência , Diferenciação Celular , Mutação , Células Progenitoras Mieloides/fisiologia , Osteoclastos/fisiologia , Osteopetrose/genética , Osteopetrose/patologia , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA