Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Semin Cell Dev Biol ; 143: 66-74, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35241367

RESUMO

Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.


Assuntos
Mitocôndrias Musculares , Desenvolvimento Muscular , Músculo Esquelético , Atrofia Muscular , Humanos , Apoptose/fisiologia , Caspases/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mitocôndrias Musculares/metabolismo
2.
J Cell Physiol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212955

RESUMO

Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.

3.
BMC Pulm Med ; 24(1): 328, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978039

RESUMO

BACKGROUND: This study's purposes were to evaluate the impact of biological therapies on outcomes in patients with severe asthma (SA) and chronic rhinosinusitis (CRS) and to compare these effects among those with NP (CRSwNP) versus those without NP (CRSsNP) in the "real-world" setting in Saudi Arabian patients. METHODS: From March to September 2022, a retrospective observational cohort study was undertaken at the severe asthma clinics of the Armed Forces Hospital-Southern Region (AFHSR) and King Khalid University Hospital, Abha, Saudi Arabia, to delineate the effects of dupilumab therapy. Outcomes were assessed, including clinical outcomes, FEV1, and laboratory findings before and one year after dupilumab. Post-therapy effects were compared between CRSwNP and CRSsNP. RESULTS: Fifty subjects were enrolled, with a mean age of 46.56. There were 27 (54%) females and 23(46%) males. Significant improvements in clinical parameters (frequency of asthma exacerbations and hospitalizations, the use of OCs, anosmia, SNOTT-22, and the ACT), FEV1, and laboratory ones (serum IgE and eosinophilic count) were observed 6 and 12 months after using dupilumab (p < 0.001), respectively. However, after 12 months of dupilumab therapy, there were no significant differences between those with and without NP with regards to clinical (anosmia, ACT, and OCs use), laboratory (eosinophilic count, serum IgE level) parameters, and FEV1%. CONCLUSIONS: Patients with CRS experienced significant improvements in clinical, FEV1, and laboratory outcomes after dupilumab therapy. However, these improvements were not maintained when comparing CRSwNP with CRSsNP. There were no significant differences between those with and without NP regarding ACT and OCs use or laboratory (eosinophilic count, serum IgE level) parameters. Further prospective multicenter studies are warranted.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Pólipos Nasais , Rinossinusite , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Terapia Biológica/métodos , Doença Crônica , Imunoglobulina E/sangue , Pólipos Nasais/tratamento farmacológico , Pólipos Nasais/complicações , Estudos Retrospectivos , Rinossinusite/complicações , Rinossinusite/tratamento farmacológico , Arábia Saudita , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Am J Physiol Cell Physiol ; 324(5): C1141-C1157, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689672

RESUMO

Duchenne muscular dystrophy (DMD) is associated with distinct mitochondrial stress responses. Here, we aimed to determine whether the prospective mitochondrial-enhancing compound Olesoxime, prevents early-stage mitochondrial stress in limb and respiratory muscle from D2.mdx mice using a proof-of-concept short-term regimen spanning 10-28 days of age. As mitochondrial-cytoplasmic energy transfer occurs via ATP- or phosphocreatine-dependent phosphate shuttling, we assessed bioenergetics with or without creatine in vitro. We observed that disruptions in Complex I-supported respiration and mH2O2 emission in D2.mdx quadriceps and diaphragm were amplified by creatine demonstrating mitochondrial creatine insensitivity manifests ubiquitously and early in this model. Olesoxime selectively rescued or maintained creatine sensitivity in both muscles, independent of the abundance of respiration-related mitochondrial proteins or mitochondrial creatine kinase cysteine oxidation in quadriceps. Mitochondrial calcium retention capacity and glutathione were altered in a muscle-specific manner in D2.mdx but were generally unchanged by Olesoxime. Treatment reduced serum creatine kinase (muscle damage) and preserved cage hang-time, microCT-based volumes of lean compartments including whole body, hindlimb and bone, recovery of diaphragm force after fatigue, and cross-sectional area of diaphragm type IIX fiber, but reduced type I fibers in quadriceps. Grip strength, voluntary wheel-running and fibrosis were unaltered by Olesoxime. In summary, locomotor and respiratory muscle mitochondrial creatine sensitivities are lost during early stages in D2.mdx mice but are preserved by short-term treatment with Olesoxime in association with specific indices of muscle quality suggesting early myopathy in this model is at least partially attributed to mitochondrial stress.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Creatina/metabolismo , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Diafragma/metabolismo , Músculo Esquelético , Modelos Animais de Doenças
5.
Angew Chem Int Ed Engl ; 62(21): e202301624, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946837

RESUMO

Point-of-care testing (POCT) of clinical biomarkers is critical to health monitoring and timely treatment, yet biosensing assays capable of detecting biomarkers without the need for costly external equipment and reagents are limited. Blood-based assays are, specifically, challenging as blood collection is invasive and follow-upprocessing is required. Here, we report a versatile assay that employs hydrogel microneedles (HMNs) to extract interstitial fluid (ISF), in a minimally invasive manner integrated with graphene oxide-nucleic acid (GO.NA)-based fluorescence biosensor to sense the biomarkers of interest in situ. The HMN-GO.NA assay is supplemented with a portable detector, enabling a complete POCT procedure. Our system could successfully measure four clinically important biomarkers (glucose, uric acid (UA), insulin, and serotonin) ex vivo, in addition, to accurately detecting glucose and UA in vivo.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Hidrogéis , Glucose , Biomarcadores , Sondas de Ácido Nucleico
6.
Cell Tissue Res ; 390(1): 59-70, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790585

RESUMO

The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.


Assuntos
Anel Fibroso , Disco Intervertebral , Animais , Colágeno , Cor , Imunofluorescência , Coluna Vertebral , Suínos
7.
Cell Mol Life Sci ; 78(10): 4653-4675, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751143

RESUMO

The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.


Assuntos
Mitocôndrias/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Regeneração , Animais , Humanos
8.
Pflugers Arch ; 473(2): 241-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420549

RESUMO

Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10-72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [ηp2 = 0.14]) whereas PGC-1α protein decreased (main effect of time: p < 0.01) during both FAST and FAST+EX. P53 acetylation increased in both conditions (main effect of time: p < 0.01) whereas ACC and SIRT1 phosphorylation were non-significantly decreased (both p < 0.06 [ηp2 = 0.15]). Fasting-induced increases in NFE2L2 and NRF1 protein were observed (main effects of time: p < 0.03), though TFAM and COXIV protein remained unchanged (p > 0.05). Elevating whole-body energetic stress blunted the increase in p53 mRNA, which was apparent during FAST only (condition × time interaction: p = 0.04). Select autophagy/mitophagy regulators (LC3BI, LC3BII, BNIP3) were non-significantly reduced at the protein level (p ≤ 0.09 [ηp2 > 0.13]) but the LC3II:I ratio was unchanged (p > 0.05). PDK4 mRNA (p < 0.01) and intramuscular triglyceride content in type IIA fibers (p = 0.04) increased similarly during both conditions. Taken together, human skeletal muscle signaling, mRNA/protein expression, and substrate storage appear to be unaffected by whole-body energetic stress during the initial hours of fasting.


Assuntos
Restrição Calórica , Metabolismo Energético , Exercício Físico , Jejum/metabolismo , Mitocôndrias Musculares/metabolismo , Contração Muscular , Músculo Quadríceps/metabolismo , Acetilação , Adaptação Fisiológica , Adolescente , Adulto , Estudos Cross-Over , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Mitocôndrias Musculares/genética , Fator 1 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Fatores de Tempo , Adulto Jovem
10.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993026

RESUMO

The plasminogen system is a critical proteolytic system responsible for the remodeling of the extracellular matrix (ECM). The master regulator of the plasminogen system, plasminogen activator inhibitor-1 (PAI-1), has been implicated for its role in exacerbating various disease states not only through the accumulation of ECM (i.e., fibrosis) but also its role in altering cell fate/behaviour. Examination of PAI-1 has extended through various tissues and cell-types with recent investigations showing its presence in skeletal muscle. In skeletal muscle, the role of this protein has been implicated throughout the regeneration process, and in skeletal muscle pathologies (muscular dystrophy, diabetes, and aging-driven pathology). Needless to say, the complete function of this protein in skeletal muscle has yet to be fully elucidated. Given the importance of skeletal muscle in maintaining overall health and quality of life, it is critical to understand the alterations-particularly in PAI-1-that occur to negatively impact this organ. Thus, we provide a comprehensive review of the importance of PAI-1 in skeletal muscle health and function. We aim to shed light on the relevance of this protein in skeletal muscle and propose potential therapeutic approaches to aid in the maintenance of skeletal muscle health.


Assuntos
Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Envelhecimento , Animais , Diabetes Mellitus , Matriz Extracelular , Humanos , Inflamação , Desenvolvimento Muscular , Distrofias Musculares , Estrutura Terciária de Proteína
11.
Int J Mol Sci ; 21(13)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605082

RESUMO

Regenerative capacity of skeletal muscle declines with age, the cause of which remains largely unknown. We investigated extracellular matrix (ECM) proteins and their regulators during early regeneration timepoints to define a link between aberrant ECM remodeling, and impaired aged muscle regeneration. The regeneration process was compared in young (three month old) and aged (18 month old) C56BL/6J mice at 3, 5, and 7 days following cardiotoxin-induced damage to the tibialis anterior muscle. Immunohistochemical analyses were performed to assess regenerative capacity, ECM remodeling, and the macrophage response in relation to plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), and ECM protein expression. The regeneration process was impaired in aged muscle. Greater intracellular and extramyocellular PAI-1 expression was found in aged muscle. Collagen I was found to accumulate in necrotic regions, while macrophage infiltration was delayed in regenerating regions of aged muscle. Young muscle expressed higher levels of MMP-9 early in the regeneration process that primarily colocalized with macrophages, but this expression was reduced in aged muscle. Our results indicate that ECM remodeling is impaired at early time points following muscle damage, likely a result of elevated expression of the major inhibitor of ECM breakdown, PAI-1, and consequent suppression of the macrophage, MMP-9, and myogenic responses.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Ativação de Macrófagos , Macrófagos/patologia , Músculo Esquelético/citologia , Necrose , Regeneração , Animais , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo
15.
Diabetologia ; 61(6): 1411-1423, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29666899

RESUMO

AIMS/HYPOTHESIS: A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. METHODS: Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. RESULTS: Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKαThr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. CONCLUSIONS/INTERPRETATION: Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Adulto , Índice de Massa Corporal , Cálcio/química , Diabetes Mellitus Tipo 1/patologia , Metabolismo Energético , Exercício Físico/fisiologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Músculo Esquelético/patologia , Consumo de Oxigênio , Adulto Jovem
18.
Infection ; 44(1): 127-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353885

RESUMO

A case of localized lung scedosporiosis is reported here that mimicked aspergilloma in an immunocompetent host. Through this case the importance of considering Scedosporium spp. in differential diagnosis of locally invasive lung infections and fungal ball is highlighted. As it is difficult to differentiate Scedosporium from Aspergillus on clinical grounds, microscopy, radiology and histopathology, this case is further emphasizing the significance of the definitive etiological characterization of Scedosporium through culture or molecular diagnostic tools. Accurate identification of Scedosporium, surgical resection and high-dose voriconazole has been associated with favorable outcome in most reported cases of scedosporiosis.


Assuntos
Aspergilose/patologia , Pneumopatias Fúngicas/diagnóstico , Pneumopatias Fúngicas/patologia , Scedosporium/isolamento & purificação , Adulto , Antifúngicos/uso terapêutico , Desbridamento , Diagnóstico Diferencial , Humanos , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/terapia , Masculino , Voriconazol/uso terapêutico
19.
Autophagy ; : 1-12, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007805

RESUMO

Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.

20.
Front Physiol ; 15: 1354091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655027

RESUMO

The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA