Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Biol ; 59(1): 1058-1064, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34365913

RESUMO

CONTEXT: Streblus asper Lour. (Moraceae) is used for the treatment of different ailments, including diabetes, and requires scientific validation. OBJECTIVE: The study evaluates antidiabetic effects, antioxidant potential, and cytotoxicity of leaf and bark extracts of S. asper. MATERIALS AND METHODS: Antidiabetic effects were assessed by inducing diabetes in Wistar albino rats (n = 5, six groups included 30 rats) by injecting alloxan [0.25 mg/kg body weight (bw)] intraperitoneally, and efficacy of methanol extracts of leaf and bark, and aqueous extract of leaves were evaluated by oral administration of 300 mg/kg bw of extracts for 3 weeks. Glibenclamide (Dibenol™) was used as a control (10 mg/kg bw). Antioxidant properties were examined by DPPH free radical scavenging activity, and cytotoxicity was investigated using a brine shrimp lethality assay. RESULTS: Methanol extracts of leaves and bark, and the aqueous extract of leaves of S. asper, caused significant reductions in blood glucose levels in diabetic rats of 36.83, 70.33, and 52.71%, respectively, after 21 days of treatment. IC50 values in DPPH radical scavenging assessment for those extracts were 58.92, 88.54, and 111.36 µg/mL, respectively. LC50 values for brine shrimp lethality for the extracts were 173.80, 32.36, and 3235.9 µg/mL, respectively. DISCUSSION AND CONCLUSIONS: The methanol bark extract of S. asper showed significant antidiabetic activity. This study will significantly contribute to establishing the plant as an alternative medicinal resource for rural populations of Bangladesh and provides an opportunity for further research to identify the primary active compound(s) and establish new drug candidates.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Moraceae/química , Extratos Vegetais/farmacologia , Aloxano/farmacologia , Animais , Bangladesh , Glicemia , Diabetes Mellitus Experimental/induzido quimicamente , Glibureto/farmacologia , Modelos Animais , Casca de Planta/química , Extratos Vegetais/toxicidade , Ratos , Ratos Wistar
2.
PLoS One ; 19(3): e0301348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551991

RESUMO

Addition to the angiosperm flora provides essential insights into the biodiversity of a region, contributing to ecological understanding and conservation planning. Gafargaon subdistrict under Mymensingh district in Bangladesh represents a diverse population of angiosperms with a multifaceted ecosystem that demands re-evaluation of the existing angiosperm diversity of Gafargaon to update the status of angiosperm taxa and facilitate their conservation efforts. With this endeavor, a total of 100 angiosperm taxa belonging to 90 genera and 46 families were uncovered as additional occurrence in Gafargaon. The species in the area showcased a variety of life forms, including 63 herbs, 14 shrubs, 14 trees, and 9 climbers. Among the recorded taxa, Chamaecostus cuspidatus (Nees & Mart.) C.D. Specht & D.W. Stev. was selected for antidiabetic drug design endeavor based on citation frequency and ethnomedicinal evidence. A total of 41 phytochemicals of C. cuspidatus were screened virtually, targeting the Dipeptidyl peptidase 4 protein through structure-based drug design approach, which unveiled two lead compounds, such as Tigogenin (-9.0 kcal/mol) and Diosgenin (-8.5 kcal/mol). The lead candidates demonstrated favorable pharmacokinetic and pharmacodynamic properties with no major side effects. Molecular dynamics simulation revealed notable stability and structural compactness of the lead compounds. Principal component analysis and Gibbs free energy landscape further supported the results of molecular dynamics simulation. Molecular mechanics-based MM/GBSA approach unraveled higher free binding energies of Diosgenin (-47.36 kcal/mol) and Tigogenin (-46.70 kcal/mol) over Alogliptin (-46.32 kcal/mol). The outcome of the present investigation would enrich angiosperm flora of Gafargaon and shed light on the role of C. cuspidatus to develop novel antidiabetic therapeutics to combat diabetes.


Assuntos
Diosgenina , Magnoliopsida , Humanos , Hipoglicemiantes/farmacologia , Ecossistema , Dipeptidil Peptidase 4 , Bangladesh , Simulação de Dinâmica Molecular , Preparações Farmacêuticas , Simulação de Acoplamento Molecular
3.
J Biomol Struct Dyn ; 41(15): 7447-7462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36099201

RESUMO

Cancer is one of the leading causes of death due to its very high rate of morbidity and mortality, and there is a constant demand of effective drugs for cancer therapy. Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a significant role as central modulator of angiogenesis and is targeted frequently for developing anti-angiogenic agents to fight cancer. Helicteres isora L. (Malvaceae) is reported to possess diverse medicinal properties including anti-cancer potentials. In the current investigation, 38 bioactive phytochemicals of H. isora were screened virtually to evaluate their anti-angiogenic potentials targeting VEGFR-2. The study unveiled three potential candidates such as, Diosgenin (-9.8 Kcal//mol), Trifolin (-8.4 Kcal/mol) and Yohimbine (-8.1 Kcal/mol) that showed favorable pharmacokinetic, pharmacodynamic and toxicity properties with no significant side effects. Molecular dynamics simulation employing 100 ns revealed noteworthy structural stability and compactness for all the top three candidates. The MM/GBSA binding free energy estimation corroborated the docking interactions where Yohimbine (-30.47 Kcal/mol) scored better than Diosgenin (-27.54 Kcal/mol) and Trifolin (-29.58 Kcal/mol). Target class prediction revealed enzymes in most of the cases and some FDA approved drugs were found as structurally similar analogs for Trifolin and Yohimbine. These findings could lead to the development of novel and effective anti-angiogenic agents.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-22, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668010

RESUMO

The underdeveloped countries with large populations are facing a grave global threat in the form of cholera. Vibrio cholerae, the etiologic agent of Cholera has drawn attention recently due to antimicrobial resistance and resulting outbreaks that necessitates establishment of novel medications to counteract virulence and viability of the pathogen. Sterculia urens Roxb. (Malvaceae) is an ethnomedicinally important tree, which harbors a good number of bioactive phytocompounds. In the present study, 53 phytocompounds of S. urens were screened against the promising target ToxT of V. cholerae employing structure-based drug design approach that revealed three lead compounds, viz., 4,4,5,8-Tetramethylchroman-2-ol (-8.2 kcal/mol), Beta-Bisabolol (-8.2 kcal/mol) and Ledol (-8.7 kcal/mol) with satisfactory ADMET properties. Molecular dynamics simulation for 150 ns unveiled notable compactness and structural stability for the lead compounds considering RMSD, RMSF, Rg, MolSA, PSA and protein-ligand contacts parameters. Molecular mechanics-based MM/GBSA binding energy calculation revealed Beta-Bisabolol (-66.74 kcal/mol) to have better scores than 4,4,5,8-Tetramethylchroman-2-ol (-47.42 kcal/mol) and Ledol (-65.79 kcal/mol). Enzymes were mostly found as drug target class, and Nabilone was found as a structurally similar analog for 4,4,5,8-Tetramethylchroman-2-ol. These discoveries could aid in revealing new antibacterial medications targeting ToxT to combat Cholera.Communicated by Ramaswamy H. Sarma.

5.
Toxicol Rep ; 10: 56-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36583135

RESUMO

In recent years, small molecule inhibition of LDHA (Lactate Dehydrogenase A) has evolved as an appealing option for anticancer therapy. LDHA catalyzes the interconversion of pyruvate and lactate in the glycolysis pathway to play a crucial role in aerobic glycolysis. Therefore, in the current investigation LDHA was targeted with bioactive phytochemicals of an ethnomedicinally important plant species Oroxylum indicum (L.) Kurz. A total of 52 phytochemicals were screened against LDHA protein through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) assay and molecular dynamics simulation to reveal three potential lead compounds such as Chrysin-7-O-glucuronide (-8.2 kcal/mol), Oroxindin (-8.1 kcal/mol) and Oroxin A (-8.0 kcal/mol). ADMET assay unveiled favorable pharmacokinetic, pharmacodynamic and toxicity properties for all the lead compounds. Molecular dynamics simulation exhibited significant conformational stability and compactness. MM/GBSA free binding energy calculations further corroborated the selection of top candidates where Oroxindin (-46.47 kcal/mol) was found to be better than Chrysin-7-O-glucuronide (-45.72 kcal/mol) and Oroxin A (-37.25 kcal/mol). Aldolase reductase and Xanthine dehydrogenase enzymes were found as potential drug targets and Esculin, the FDA approved drug was identified as structurally analogous to Oroxindin. These results could drive in establishing novel medications targeting LDHA to fight cancer.

6.
Health Sci Rep ; 6(10): e1654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37885464

RESUMO

Background and Aims: The study aimed to evaluate the pharmacological properties of methanolic extracts of leaves and barks of Woodfordia fruticosa (L.) Kurz (family: Lythraceae) focusing on antioxidant, thrombolytic, anti-inflammatory, antibacterial, analgesic, and antidiarrheal effects. Methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, clot lysis, disc diffusion, and membrane stabilizing methods were employed to assess in vitro antioxidant, thrombolytic, antibacterial, and anti-inflammatory properties of the leaf and bark methanolic extracts (ME) of W. fruticosa and different organic solvents, that is, petroleum ether (PE), dichloromethane (DCM), chloroform (CL), and aqueous (AQ) fractions. In addition, in vivo central and peripheral analgesic and antidiarrheal activities of both crude extracts were evaluated at two doses (200 and 400 mg/kg of body weight [bw]). Results: All the extracts and fractions showed promising antioxidant properties by scavenging DDPH free radicals with IC50 of 6.11-20.79 µg/mL. AQ fraction (41.24%) of leaves and ME (44.90%) of bark exerted notable in vitro thrombolytic activity. The CL fraction of leaves and AQ fraction of the bark showed 43.16% and 45.37% inhibition of RBC hemolysis, respectively, compared to the inhibition of RBC hemolysis by aspirin in a hypotonic-induced membrane stabilizing assay. Besides, both extracts were observed to provide significant (p < 0.001) central and peripheral analgesic responses at both doses of 200 and 400 mg/kg bw. Furthermore, both doses of bark extract (p < 0.001) and the 400 mg/kg bw of leaf extract (p < 0.05) were observed to possess statistically significant antidiarrheal activity. Additionally, in an in vivo acute toxicity investigation, both extracts had a median lethal dose (LD50) greater than 5000 mg/kg bw, indicating their safety level. Conclusion: The current study proves the ethnomedicinal uses of W. fruticosa; however, further studies are required for phytochemical screening to isolate the responsible bioactive compounds and discover the lead molecules from the plant species.

7.
Saudi J Biol Sci ; 28(7): 3768-3775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220230

RESUMO

Adenium obesum (Forssk.) Roem. & Schult. belonging to the family Apocynaceae, is remarkable for its horticultural and ornamental values, poisonous nature, and medicinal uses. In order to have understanding of cp genome characterization of highly valued medicinal plant, and the evolutionary and systematic relationships, the complete plastome / chloroplast (cp) genome of A. obesum was sequenced. The assembled cp genome of A. obesum was found to be 154,437 bp, with an overall GC content of 38.1%. A total of 127 unique coding genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes. The repeat structures were found to comprise of only mononucleotide repeats. The SSR loci are compososed of only A/T bases. The phylogenetic analysis of cp genomes revealed its proximity with Nerium oleander.

8.
Saudi J Biol Sci ; 26(3): 554-562, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899171

RESUMO

The aerial parts of extensively used ethnomedicinal plant Mikania cordata (Burm. f.) Robinson growing wild in Bangladesh were investigated to isolate and characterize compounds responsible for the bioactivities of the plant. In the present study, a new derivatives of betulinic acid, 16-hydroxy betulinic acid [3ß,16-dihydroxy-lup-20(29)-en-28-oic] was isolated and the structure of the compound was determined by NMR spectroscopic means and comparing with available literature data. The isolated compound was then investigated for different pharmacological activities including antibacterial, antifungal, analgesic, anti-inflammatory and antipyretic potential employing different methods. The compound showed potent antibacterial activity with inhibition zone of diameter ranging from 12.0 to 17.5 mm and antifungal activity with mycelial growth inhibition ranging from 37.6 to 54.5%. The MIC values for antibacterial and antifungal activities ranged from 31.5-125 and 250-1000 µg/mL respectively. The compound (50 and 100 mg/kg body weight) showed potent peripheral and central analgesic activity with 55.19% and 41% of writhing inhibition at 90 min after administration of the compound and the highest 55.98%, 79.18% elongation of reaction time, respectively. In anti-inflammatory activity screening, the compound (100 mg/kg b.w.) revealed the highest 77.08% edema inhibition at 4 h after administration of carrageenan. In antipyretic assay, 16-hydroxy betulinic acid displayed a strong antipyretic effect in yeast-induced rats. From the present study it is apparent that 16-hydroxy betulinic acid might play vital role to establish M. cordata as ethnomedicinal plant to treat wound, cuts and fever.

9.
Food Chem Toxicol ; 48(6): 1757-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20385198

RESUMO

The chemical composition of the hydro-distilled essential oil from leaves of Curcuma aromatica Salisb. was analysed by GC-MS. Twenty-three compounds representing 94.29% of the total oil were identified. The antioxidant activities of the oil and various extracts of C. aromatica were evaluated by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical-scavenging assays. The oil and methanol extract showed potent DPPH radical-scavenging activities (IC(50)=14.45 and 16.58 microg/ml, respectively), which were higher than butylated hydroxyanisole (IC(50)=18.27 microg/ml). The extracts also exhibited remarkable superoxide radical-scavenging activities (IC(50)=22.6-45.27 microg/ml) and the activity in the methanol extract was superior to all other extracts (IC(50)=22.6 microg/ml). Furthermore, the amount of total phenolic compounds was determined and its content in ethyl acetate extract was the highest as compared to other extracts. The results indicate that the oil and extracts of C. aromatica could serve as an important bio-resource of antioxidants for using in the food industries.


Assuntos
Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Zingiberaceae/química , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA